A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
J. Ma, J. Y. Qiu, X. Yu, and W. Y. Lan, “Distributed Nash equilibrium seeking over random graphs,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2193–2196, Dec. 2022. doi: 10.1109/JAS.2022.105854
Citation: J. Ma, J. Y. Qiu, X. Yu, and W. Y. Lan, “Distributed Nash equilibrium seeking over random graphs,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2193–2196, Dec. 2022. doi: 10.1109/JAS.2022.105854

Distributed Nash Equilibrium Seeking Over Random Graphs

doi: 10.1109/JAS.2022.105854
More Information
  • loading
  • [1]
    M. Ye, “Distributed robust seeking of Nash equilibrium for networked games: An extended state observer-based approach,” IEEE Trans. Cybern., vol. 52, no. 3, pp. 1527–1538, 2022. doi: 10.1109/TCYB.2020.2989755
    [2]
    S. Najeh and A. Bouallegue, “Distributed vs centralized game theory-based mode selection and power control for D2D communications,” Phys. Commun., vol. 38, p. 100962, 2020. doi: 10.1016/j.phycom.2019.100962
    [3]
    L. Pavel, “Distributed gne seeking under partial-decision information over networks via a doubly-augmented operator splitting approach,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1584–1597, 2020. doi: 10.1109/TAC.2019.2922953
    [4]
    H. Yin, U. V. Shanbhag, and G. Mehta, “Nash equilibrium problems with scaled congestion costs and shared constraints,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1702–1708, 2011. doi: 10.1109/TAC.2011.2137590
    [5]
    M. Ye and G. Hu, “Distributed Nash equilibrium seeking by a consensus based approach,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4811–4818, 2017. doi: 10.1109/TAC.2017.2688452
    [6]
    M. Ye, “Distributed Nash equilibrium seeking for games in systems with bounded control inputs,” IEEE Trans. Autom. Control, vol. 66, no. 8, pp. 3833–3839, 2020.
    [7]
    M. Ye, G. Hu, L. Xie, and S. Xu, “Differentially private distributed Nash equilibrium seeking for aggregative games,” IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2451–2458, 2022. doi: 10.1109/TAC.2021.3075183
    [8]
    P. Yi and L. Pavel, “A distributed primal-dual algorithm for computation of generalized Nash equilibria via operator splitting methods,” in Proc. 56th IEEE Conf. Decis. Control, Melbourne, Australia, 2017, pp. 3841–3846.
    [9]
    M. Ye, L. Ding, and S. Xu, “Fully distributed Nash equilibrium seeking for high-order players with bounded controls and directed graphs,” arXiv preprint arXiv: 2108.06573, 2021.
    [10]
    Y. Tang and P. Yi, “Nash equilibrium seeking under directed graphs,” arXiv preprint arXiv: 2005.10495, 2020.
    [11]
    M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 949–966, Jun. 2022. doi: 10.1109/JAS.2022.105428
    [12]
    M. Ye and G. Hu, “Distributed Nash equilibrium seeking in multiagent games under switching communication topologies,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3208–3217, 2017.
    [13]
    Y. Lou, Y. Hong, L. Xie, G. Shi, and K. H. Johansson, “Nash equilibrium computation in subnetwork zero-sum games with switching communications,” IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 2920–2935, 2016. doi: 10.1109/TAC.2015.2504962
    [14]
    F. Salehisadaghiani and L. Pavel, “Distributed Nash equilibrium seeking: A gossip-based algorithm,” Automatica, vol. 72, pp. 209–216, 2016. doi: 10.1016/j.automatica.2016.06.004
    [15]
    J. Wu, T. Yang, D. Wu, K. Kalsi, and K. H. Johansson, “Distributed optimal dispatch of distributed energy resources over lossy communication networks,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 3125–3137, 2017. doi: 10.1109/TSG.2017.2720761
    [16]
    Z. Wang and H. Li, “Edge-based stochastic gradient algorithm for distributed optimization,” IEEE Trans. Network Sci. Eng., vol. 7, no. 3, pp. 1421–1430, 2019.
    [17]
    T. Yang, J. Lu, D. Wu, J. Wu, G. Shi, Z. Meng, and K. H. Johansson, “A distributed algorithm for economic dispatch over time-varying directed networks with delays,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5095–5106, 2016.
    [18]
    W. Shi and L. Pavel, “LANA: An admm-like Nash equilibrium seeking algorithm in decentralized environment,” in Proc. Am. Control Conf., IEEE, Seattle, USA, 2017, pp. 285–290.
    [19]
    E. Cavazzuti, M. Pappalardo, and M. Passacantando, “Nash equilibria, variational inequalities, and dynamical systems,” J. Optim. Theory Appl., vol. 114, no. 3, pp. 491–506, 2002. doi: 10.1023/A:1016056327692
    [20]
    G. X.-Z. Yuan, G. Isac, K.-K. Tan, and J. Yu, “The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria,” Acta Appl. Math., vol. 54, no. 2, pp. 135–166, 1998. doi: 10.1023/A:1006095413166
    [21]
    J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous distributed gradient methods over stochastic networks,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 434–448, 2017.
    [22]
    H. Robbins and D. Siegmund, “A convergence theorem for non negative almost supermartingales and some applications,” in Proc. Optim. Methods Stat., Amsterdam, 1971, pp. 233–257.
    [23]
    F. Salehisadaghiani, W. Shi, and L. Pavel, “Distributed Nash equilibrium seeking under partial-decision information via the alternating direction method of multipliers,” arXiv preprint arXiv: 1707.01965, 2018.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (112) PDF downloads(35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return