IEEE/CAA Journal of Automatica Sinica
Citation:  T. Li, X. D. Sun, G. Lei, Z. B. Yang, Y. G. Guo, and J. G. Zhu, “Finitecontrolset model predictive control of permanent magnet synchronous motor drive systems — An overview,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2087–2105, Dec. 2022. doi: 10.1109/JAS.2022.105851 
[1] 
G. Lei, J. G. Zhu, Y. G. Guo, C. C. Liu, and B. Ma, “A review of design optimization methods for electrical machines,” Energies, vol. 10, no. 12, p. 1962, Nov. 2017. doi: 10.3390/en10121962

[2] 
X. D. Sun, M. K. Wu, G. Lei, Y. G. Guo, and J. G. Zhu, “An improved model predictive current control for PMSM drives based on current track circle,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3782–3793, May 2021. doi: 10.1109/TIE.2020.2984433

[3] 
S. X. Niu, Y. X. Luo, W. N. Fu, and X. D. Zhang, “An indirect reference vectorbased model predictive control for a threephase PMSM motor,” IEEE Access, vol. 8, pp. 29435–29445, Jan. 2020.

[4] 
Y. H. Hwang and J. Lee, “HEV motor comparison of IPMSM with Nd sintered magnet and heavy rareearth free injection magnet in the same size,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, p. 5206405, Apr. 2018.

[5] 
X. D. Sun, Z. J. Jin, Y. F. Cai, Z. B. Yang, and L. Chen, “Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13631–13640, Dec. 2020. doi: 10.1109/TPEL.2020.2994254

[6] 
X. F. Ding, H. Guo, R. Xiong, F. D. Chen, D. H. Zhang, and C. Gerada, “A new strategy of efficiency enhancement for traction systems in electric vehicles,” Appl. Energy, vol. 205, pp. 880–891, Nov. 2017. doi: 10.1016/j.apenergy.2017.08.051

[7] 
E. Trancho, E. Ibarra, A. Arias, I. Kortabarria, P. Prieto, I. Martínez De Alegría, J. Andreu, and I. López, “Sensorless control strategy for lightduty EVs and efficiency loss evaluation of high frequency injection under standardized urban driving cycles,” Appl. Energy, vol. 224, pp. 647–658, Aug. 2018. doi: 10.1016/j.apenergy.2018.05.019

[8] 
X. D. Sun, Z. Shi, Y. F. Cai, G. Lei, Y. G. Guo, and J. G. Zhu, “Drivingcycleoriented design optimization of a permanent magnet hub motor drive system for a fourwheeldrive electric vehicle,” IEEE Trans. Transp. Electrific., vol. 6, no. 3, pp. 1115–1125, Sept. 2020. doi: 10.1109/TTE.2020.3009396

[9] 
H. Yao, Y. Yan, T. N. Shi, G. Z. Zhang, Z. Q. Wang, and C. L. Xia, “A novel svpwm scheme for fieldoriented vectorcontrolled PMSM drive system fed by cascaded Hbridge inverter,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 8988–9000, Aug. 2021. doi: 10.1109/TPEL.2021.3054642

[10] 
Q. F. Zhang, H. H. Guo, C. Guo, Y. C. Liu, D. Wang, K. Y. Lu, Z. R. Zhang, X. Z. Zhuang, and D. Z. Chen, “An adaptive proportionalintegralresonant controller for speed ripple suppression of PMSM drive due to current measurement error,” Int. J. Electr. Power Energy Syst., vol. 129, p. 106866, Jul. 2021. doi: 10.1016/j.ijepes.2021.106866

[11] 
S. VaezZadeh, “Analysis of a DTC with back emf oriented voltage for PMS motor drives,” IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1594–1596, Sept. 2018. doi: 10.1109/TEC.2018.2849858

[12] 
Y. Z. Zhou, X. G. Lin, and M. Cheng, “A faulttolerant direct torque control for sixphase permanent magnet synchronous motor with arbitrary two opened phases based on modified variables,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 549–556, Jun. 2016. doi: 10.1109/TEC.2015.2504376

[13] 
X. D. Sun, K. K. Diao, G. Lei, Y. G. Guo, and J. G. Zhu, “Direct torque control based on a fast modeling method for a segmentedrotor switched reluctance motor in HEV application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 1, pp. 232–241, Feb. 2021. doi: 10.1109/JESTPE.2019.2950085

[14] 
X. D. Sun, L. Chen, H. B. Jiang, Z. B. Yang, J. F. Chen, and W. Y. Zhang, “Highperformance control for a bearingless permanentmagnet synchronous motor using neural network inverse scheme plus internal model controllers,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3479–3488, Jun. 2016. doi: 10.1109/TIE.2016.2530040

[15] 
Z. W. Ping, Q. C. Ma, T. Wang, Y. Z. Huang, and J. G. Lu, “Speed tracking control of permanent magnet synchronous motor by a novel twostep internal model control approach,” Int. J. Control Autom. Syst., vol. 16, no. 6, pp. 2754–2762, Dec. 2018. doi: 10.1007/s125550180255y

[16] 
X. D. Sun, Z. Shi, L. Chen, and Z. B. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1539–1548, Dec. 2016. doi: 10.1109/TEC.2016.2591925

[17] 
Z. W. Ping, T. Wang, Y. Z. Huang, H. Wang, J. G. Lu, and Y. Y. Li, “Internal model control of PMSM position servo system: Theory and experimental results,” IEEE Trans. Ind. Inf., vol. 16, no. 4, pp. 2202–2211, Apr. 2020. doi: 10.1109/TII.2019.2935248

[18] 
P. Gao, G. M. Zhang, H. M. Ouyang, and L. Mei, “An adaptive super twisting nonlinear fractional order PID sliding mode control of permanent magnet synchronous motor speed regulation system based on extended state observer,” IEEE Access, vol. 8, pp. 53498–53510, Mar. 2020.

[19] 
Z. J. Jin, X. D. Sun, G. Lei, Y. G. Guo, and J. G. Zhu, “Sliding mode direct torque control of SPMSMS based on a hybrid wolf optimization algorithm,” IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 4534–4544, May 2022. doi: 10.1109/TIE.2021.3080220

[20] 
X. D. Sun, M. K. Wu, Z. B. Yang, G. Lei, and Y. G. Guo, “Highperformance control for a permanentmagnet linear synchronous generator using state feedback control scheme plus grey wolf optimisation,” IET Electr. Power Appl., vol. 14, no. 5, pp. 771–780, May 2020. doi: 10.1049/ietepa.2019.0383

[21] 
T. Tarczewski and L. M. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867–3875, Jun. 2016. doi: 10.1109/TIE.2015.2497302

[22] 
Z. G. Yin, Y. X. Gu, C. Du, and F. T. Gao, “Research on backstepping control of permanent magnet linear synchronous motor based on extended state observer,” in Proc. IEEE Int. Power Electronics and Application Conf. and Expo., Shenzhen, China, 2018, pp. 179–183.

[23] 
X. D. Sun, C. C. Hu, G. Lei, Y. G. Guo, and J. G. Zhu, “State feedback control for a PM hub motor based on gray wolf optimization algorithm,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 1136–1146, Jan. 2020. doi: 10.1109/TPEL.2019.2923726

[24] 
X. F. Wang, X. C. Fang, S. Lin, F. Lin, and Z. Yang, “Predictive commonmode voltage suppression method based on current ripple for permanent magnet synchronous motors,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 2, pp. 946–955, Jun. 2019. doi: 10.1109/JESTPE.2019.2896158

[25] 
M. Liu, K. W. Chan, J. F. Hu, W. Z. Xu, and J. Rodriguez, “Model predictive direct speed control with torque oscillation reduction for PMSM drives,” IEEE Trans. Ind. Inf., vol. 15, no. 9, pp. 4944–4956, Sept. 2019. doi: 10.1109/TII.2019.2898004

[26] 
S. Chai, L. Wang, and E. Rogers, “A cascade MPC control structure for a PMSM with speed ripple minimization,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 2978–2987, Aug. 2013. doi: 10.1109/TIE.2012.2201432

[27] 
X. D. Sun, C. C. Hu, J. G. Zhu, S. H. Wang, W. Q. Zhou, Z. B. Yang, G. Lei, K. Li, B. Zhu, and Y. G. Guo, “MPTC for PMSMs of EVs with multimotor driven system considering optimal energy allocation,” IEEE Trans. Magn., vol. 55, no. 7, p. 8104306, Jul. 2019.

[28] 
J. Rodriguez, M. Kazmierkowski, J. R. Espinoza, Zanchetta, H. AbuRub, H. A. Young, and C. A. Rojas, “State of the art of finite control set model predictive control in power electronics,” IEEE Trans. Ind. Inf., vol. 9, no. 2, pp. 1003–1016, May 2013. doi: 10.1109/TII.2012.2221469

[29] 
F. Villarroel, J. R. Espinoza, C. A. Rojas, J. Rodriguez, M. Rivera, and D. Sbarbaro, “Multiobjective switching state selector for finitestates model predictive control based on fuzzy decision making in a matrix converter,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 589–599, Feb. 2013. doi: 10.1109/TIE.2012.2206343

[30] 
J. L. Elizondo, A. Olloqui, M. Rivera, M. E. Macias, O. Probst, O. M. Micheloud, and J. Rodriguez, “Modelbased predictive rotor current control for grid synchronization of a DFIG driven by an indirect matrix converter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 4, pp. 715–726, Dec. 2014. doi: 10.1109/JESTPE.2014.2349952

[31] 
J. Rodriguez, C. Garcia, A. Mora, F. FloresBahamonde, Acuna, M. Novak, Y. C. Zhang, L. Tarisciotti, S. A. Davari, Z. B. Zhang, F. X. Wang, M. Norambuena, T. Dragicevic, F. Blaabjerg, T. Geyer, R. Kennel, D. A. Khaburi, M. Abdelrahem, Z. Zhang, N. Mijatovic, and R. Aguilera, “Latest advances of model predictive control in electrical drives — Part I: Basic concepts and advanced strategies,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3927–3942, Apr. 2022. doi: 10.1109/TPEL.2021.3121532

[32] 
J. Rodriguez, C. Garcia, A. Mora, S. A. Davari, J. Rodas, D. F. Valencia, M. Elmorshedy, F. X. Wang, K. K. Zuo, L. Tarisciotti, F. FloresBahamonde, W. Xu, Z. B. Zhang, Y. C. Zhang, M. Norambuena, A. Emadi, T. Geyer, R. Kennel, T. Dragicevic, D. A. Khaburi, Z. Zhang, M. Abdelrahem, and N. Mijatovic, “Latest advances of model predictive control in electrical drives. Part II: Applications and benchmarking with classical control methods,” IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5047–5061, May 2022. doi: 10.1109/TPEL.2021.3121589

[33] 
D. D. Su, C. N. Zhang, and Y. G. Dong, “Finitestate model predictive current control for surfacemounted permanent magnet synchronous motors based on current locus,” IEEE Access, vol. 5, pp. 27366–27375, Nov. 2017.

[34] 
F. X. Wang, S. H. Li, X. Z. Mei, W. Xie, J. Rodríguez, and R. M. Kennel, “Modelbased predictive direct control strategies for electrical drives: An experimental evaluation of PTC and PCC methods,” IEEE Trans. Ind. Inf., vol. 11, no. 3, pp. 671–681, Jun. 2015. doi: 10.1109/TII.2015.2423154

[35] 
M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, Part 1: Maximum torque per ampere operation,” IEEE Trans. Ind. Inf., vol. 9, no. 4, pp. 1912–1921, Nov. 2013. doi: 10.1109/TII.2012.2227265

[36] 
O. SandreHernandez, J. De Jesus RangelMagdaleno, and R. MoralesCaporal, “Modified model predictive torque control for a PMSMdrive with torque ripple minimisation,” IET Power Electron., vol. 12, no. 5, pp. 1033–1042, May 2019. doi: 10.1049/ietpel.2018.5525

[37] 
X. D. Sun, M. K. Wu, C. F. Yin, and S. H. Wang, “Model predictive thrust force control for linear motor actuator used in active suspension,” IEEE Trans. Energy Convers., vol. 36, no. 4, pp. 3063–3072, Dec. 2021. doi: 10.1109/TEC.2021.3069843

[38] 
Q. Fei, Y. T. Deng, H. W. Li, J. Liu, and M. Shao, “Speed ripple minimization of permanent magnet synchronous motor based on model predictive and iterative learning controls,” IEEE Access, vol. 7, pp. 31791–31800, Mar. 2019.

[39] 
E. J. Fuentes, C. A. Silva, and J. I. Yuz, “Predictive speed control of a twomass system driven by a permanent magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2840–2848, Jul. 2012. doi: 10.1109/TIE.2011.2158767

[40] 
Kakosimos and H. AbuRub, “Predictive speed control with short prediction horizon for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2740–2750, Mar. 2018. doi: 10.1109/TPEL.2017.2697971

[41] 
M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007–1015, Feb. 2013. doi: 10.1109/TPEL.2012.2204277

[42] 
L. M. Yan, M. F. Dou, and Z. G. Hua, “Disturbance compensationbased model predictive flux control of SPMSM with optimal duty cycle,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 3, pp. 1872–1882, Sept. 2019. doi: 10.1109/JESTPE.2018.2859979

[43] 
S. D. Huang, G. Wu, F. Rong, C. F. Zhang, S. Huang, and Q. W. Wu, “Novel predictive stator flux control techniques for PMSM drives,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8916–8929, Sept. 2019. doi: 10.1109/TPEL.2018.2884984

[44] 
X. D. Sun, T. Li, M. Yao, G. Lei, Y. G. Guo, and J. G. Zhu, “Improved finitecontrolset model predictive control with virtual vectors for PMSHM drives,” IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 1885–1894, Sept. 2022.

[45] 
F. Yu, X. Liu, Z. H. Zhu, and J. F. Mao, “An improved finitecontrolset model predictive flux control for asymmetrical sixphase PMSMS with a novel dutycycle regulation strategy,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1289–1299, Jun. 2021. doi: 10.1109/TEC.2020.3031067

[46] 
Y. N. Zhou, H. M. Li, R. D. Liu, and J. K. Mao, “Continuous voltage vector modelfree predictive current control of surface mounted permanent magnet synchronous motor,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 899–908, Jun. 2019.

[47] 
F. X. Wang, L. He, and J. Rodriguez, “FPGAbased continuous control set model predictive current control for PMSM system using multistep error tracking technique,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13455–13464, Dec. 2020. doi: 10.1109/TPEL.2020.2984336

[48] 
A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors,” IEEE Trans. Ind. Inform., vol. 14, no. 4, pp. 1334–1346, Apr. 2018. doi: 10.1109/TII.2017.2758393

[49] 
S. Kouro, M. A. Perez, J. Rodriguez, A. M. Llor, and H. A. Young, “Model predictive control: MPC’s role in the evolution of power electronics,” IEEE Ind. Electron. Mag., vol. 9, no. 4, pp. 8–21, Dec. 2015. doi: 10.1109/MIE.2015.2478920

[50] 
C. S. Lim, E. Levi, M. Jones, N. A. Rahim, and W. Hew, “FCSMPCbased current control of a fivephase induction motor and its comparison with PIPWM control,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 149–163, Jan. 2014. doi: 10.1109/TIE.2013.2248334

[51] 
Y. X. Luo and C. H. Liu, “Multivectorbased model predictive torque control for a sixphase PMSM motor with fixed switching frequency,” IEEE Trans. Energy Convers., vol. 34, no. 3, pp. 1369–1379, Sept. 2019. doi: 10.1109/TEC.2019.2917616

[52] 
J. Q. Gao, C. Gong, W. Z. Li, and J. L. Liu, “Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5816–5819, Jul. 2020. doi: 10.1109/TIE.2019.2934060

[53] 
S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanentmagnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363–372, Apr. 2006. doi: 10.1109/TIE.2006.870875

[54] 
S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935–947, Feb. 2017. doi: 10.1109/TIE.2016.2625238

[55] 
J. F. Hu, Y. H. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids — An overview,” Renew. Sustain. Energy Rev., vol. 136, p. 110422, Feb. 2021. doi: 10.1016/j.rser.2020.110422

[56] 
A. Andersson and T. Thiringer, “Assessment of an improved finite control set model predictive current controller for automotive propulsion applications,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 91–100, Jan. 2020. doi: 10.1109/TIE.2019.2898603

[57] 
W. H. Chen, J. Yang, L. Guo, and S. H. Li, “Disturbanceobserverbased control and related methods — An overview,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1083–1095, Feb. 2016. doi: 10.1109/TIE.2015.2478397

[58] 
A. Damiano, G. Gatto, I. Marongiu, A. Perfetto, and A. Serpi, “Operating constraints management of a surfacemounted PM synchronous machine by means of an FPGAbased model predictive control algorithm,” IEEE Trans. Ind. Inform., vol. 10, no. 1, pp. 243–255, Feb. 2014. doi: 10.1109/TII.2013.2261304

[59] 
T. Zanma, S. Tozawa, Y. Takagi, K. Koiwa, and K. Z. Liu, “Optimal voltage vector in current control of PMSM considering torque ripple and reduction of the number of switching operations,” IET Power Electron., vol. 13, no. 6, pp. 1200–1206, May 2020. doi: 10.1049/ietpel.2019.0701

[60] 
H. T. Nguyen and J.W. Jung, “Asymptotic stability constraints for direct horizonone model predictive control of SPMSM drives,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8213–8219, Oct. 2018.

[61] 
S. Lin, X. Fang, X. Wang, Z. Yang and F. Lin, “Multiobjective model predictive current control method of permanent magnet synchronous traction motors with multiple current bounds in railway application,” IEEE Trans. Ind. Electron., vol. 69, no. 12, pp. 12348–12357, Dec. 2022.

[62] 
J. Yang, W. H. Chen, S. H. Li, L. Guo, and Y. D. Yan, “Disturbance/uncertainty estimation and attenuation techniques in PMSM drives — A survey,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3273–3285, Apr. 2017. doi: 10.1109/TIE.2016.2583412

[63] 
X. D. Sun, Y. Zhang, Y. F. Cai, and X. Tian, “Compensated deadbeat predictive current control considering disturbance and VSI nonlinearity for inwheel PMSMs,” IEEE/ASME Trans. Mechatron., 2021, DOI: 10.1109/TMECH.2021.3135936.

[64] 
Y. A. R. I. Mohamed, “Design and implementation of a robust currentcontrol scheme for a PMSM vector drive with a simple adaptive disturbance observer,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1981–1988, Aug. 2007. doi: 10.1109/TIE.2007.895074

[65] 
M. Abdelrahem, C. M. Hackl, Z. B. Zhang, and R. Kennel, “Robust predictive control for directdriven surfacemounted permanentmagnet synchronous generators without mechanical sensors,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 179–189, Mar. 2018. doi: 10.1109/TEC.2017.2744980

[66] 
X. D. Sun, Y. Zhang, G. Lei, Y. G. Guo, and J. G. Zhu, “An improved deadbeat predictive stator flux control with reducedorder disturbance observer for inwheel PMSMs,” IEEE/ASME Trans. Mechatron., vol. 27, no. 2, pp. 690–700, Apr. 2022. doi: 10.1109/TMECH.2021.3068973

[67] 
C. F. Zhang, G. Wu, F. Rong, J. H. Feng, L. H. Jia, J. He, and S. D. Huang, “Robust faulttolerant predictive current control for permanent magnet synchronous motors considering demagnetization fault,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5324–5334, Jul. 2018. doi: 10.1109/TIE.2017.2774758

[68] 
G. J. Pei, L. Y. Li, X. N. Gao, J. X. Liu, and R. Kennel, “Predictive current trajectory control for PMSM at voltage limit,” IEEE Access, vol. 8, pp. 1670–1679, Jan. 2020.

[69] 
T. X. Li, R. Q. Ma, and W. J. Han, “Virtualvectorbased model predictive current control of fivephase PMSM with stator current and concentrated disturbance observer,” IEEE Access, vol. 8, pp. 212635–212646, Dec. 2020.

[70] 
S. X. Niu, Y. X. Luo, W. N. Fu, and X. D. Zhang, “Robust model predictive control for a threephase PMSM motor with improved control precision,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 838–849, Jan. 2021. doi: 10.1109/TIE.2020.3013753

[71] 
F. Mwasilu, H. T. Nguyen, H. H. Choi, and J. W. Jung, “Finite set model predictive control of interior PM synchronous motor drives with an external disturbance rejection technique,” IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 762–773, Apr. 2017. doi: 10.1109/TMECH.2016.2632859

[72] 
X. G. Zhang, L. Zhang, and Y. C. Zhang, “Model predictive current control for PMSM drives with parameter robustness improvement,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1645–1657, Feb. 2019. doi: 10.1109/TPEL.2018.2835835

[73] 
X. G. Zhang, Y. Cheng, and L. Zhang, “Disturbancedeadbeat inductance observerbased current predictive control for surfacemounted permanent magnet synchronous motors drives,” IET Power Electron., vol. 13, no. 6, pp. 1172–1180, May 2020. doi: 10.1049/ietpel.2019.0727

[74] 
C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, “Modelfree predictive current control for interior permanentmagnet synchronous motor drives based on current difference detection technique,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 667–681, Feb. 2014. doi: 10.1109/TIE.2013.2253065

[75] 
M. S. Mubarok and T. H. Liu, “Implementation of predictive controllers for matrixconverterbased interior permanent magnet synchronous motor position control systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 1, pp. 261–273, Mar. 2019. doi: 10.1109/JESTPE.2018.2873151

[76] 
C. K. Lin, J. T. Yu, Y. S. Lai, H. C. Yu, Y. H. Lin, and F. M. Chen, “Simplified modelfree predictive current control for interior permanent magnet synchronous motors,” Electron. Lett., vol. 52, no. 1, pp. 49–50, 2016. doi: 10.1049/el.2015.2372

[77] 
C. K. Lin, J. T. Yu, Y. S. Lai, and H. C. Yu, “Improved modelfree predictive current control for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3942–3953, Jun. 2016. doi: 10.1109/TIE.2016.2527629

[78] 
C. A. Agustin, J. T. Yu, Y. S. Cheng, C. K. Lin, and Y. W. Yi, “A synchronized current difference updating technique for modelfree predictive current control of PMSM drives,” IEEE Access, vol. 9, pp. 63306–63318, May 2021.

[79] 
X. Li, Y. Wang, X. Guo, X. Cui, S. Zhang, and Y. Li, “An improved modelfree current predictive control method for SPMSM drives,” IEEE Access, vol. 9, pp. 134672–134681, 2021.

[80] 
X. Yuan, S. Zhang, C. N. Zhang, A. Galassini, G. Buticchi, and M. Degano, “Improved model predictive current control for SPMSM drives using current update mechanism,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 1938–1948, Mar. 2021. doi: 10.1109/TIE.2020.2973880

[81] 
X. Yuan, S. Zhang, and C. N. Zhang, “Nonparametric predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9332–9341, Sept. 2020. doi: 10.1109/TPEL.2020.2970173

[82] 
Z. Y. Chen, J. Q. Qiu, and M. J. Jin, “Adaptive finitecontrolset model predictive current control for IPMSM drives with inductance variation,” IET Electr. Power Appl., vol. 11, no. 5, pp. 874–884, May 2017. doi: 10.1049/ietepa.2016.0861

[83] 
S. Wang, R. J. Zhao, W. M. Chen, G. D. Li, and C. Liu, “Parameter identification of PMSM based on windowed least square algorithm,” Adv. Mater. Res., vol. 383390, pp. 5940–5944, Nov. 2011. doi: 10.4028/www.scientific.net/AMR.383390.5940

[84] 
N. Urasaki, Y. Noguchi, A. M. Howlader, Y. Yonaha, A. Yona, and T. Senjyu, “Widespeed range operation of interior permanent magnet synchronous motor with parameter identification,” Electric Power Compon. Syst., vol. 37, no. 8, pp. 847–865, Jun. 2009. doi: 10.1080/15325000902817218

[85] 
Y. C. Shi, K. Sun, L. Huang, and Y. D. Li, “Online identification of permanent magnet flux based on extended kalman filter for IPMSM drive with position sensorless control,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4169–4178, Nov. 2012. doi: 10.1109/TIE.2011.2168792

[86] 
C. Q. Zhong and Y. Y. Lin, “Model reference adaptive control (MRAC)based parameter identification applied to surfacemounted permanent magnet synchronous motor,” Int. J. Electron., vol. 104, no. 11, pp. 1854–1873, Jun. 2017. doi: 10.1080/00207217.2017.1329946

[87] 
Y. Chen, F. Zhou, X. Liu, and E. Hu, “Online adaptive parameter identification of PMSM based on the deadtime compensation,” Int. J. Electron., vol. 102, no. 7, pp. 1132–1150, Jul. 2015. doi: 10.1080/00207217.2014.966334

[88] 
Z. Q. Wang, M. B. Yang, L. Gao, Z. X. Wang, G. Z. Zhang, H. M. Wang, and X. Gu, “Deadbeat predictive current control of permanent magnet synchronous motor based on variable stepsize adaline neural network parameter identification,” IET Electr. Power Appl., vol. 14, no. 11, pp. 2007–2015, Nov. 2020. doi: 10.1049/ietepa.2019.0710

[89] 
O. Wallscheid and J. Böcker, “Global identification of a loworder lumpedparameter thermal network for permanent magnet synchronous motors,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 354–365, Mar. 2016. doi: 10.1109/TEC.2015.2473673

[90] 
G. Gatto, I. Marongiu, and A. Serpi, “Discretetime parameter identification of a surfacemounted permanent magnet synchronous machine,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4869–4880, Nov. 2013. doi: 10.1109/TIE.2012.2221113

[91] 
J. Sawma, F. Khatounian, E. Monmasson, L. Idkhajine, and R. Ghosn, “Analysis of the impact of online identification on model predictive current control applied to permanent magnet synchronous motors,” IET Electr. Power Appl., vol. 11, no. 5, pp. 864–873, May 2017. doi: 10.1049/ietepa.2016.0513

[92] 
L. H. Wang, G. J. Tan, and J. Meng, “Research on model predictive control of IPMSM based on adaline neural network parameter identification,” Energies, vol. 12, no. 24, p. 4803, Dec. 2019. doi: 10.3390/en12244803

[93] 
A. Brosch, S. Hanke, O. Wallscheid, and J. Böcker, “Datadriven recursive least squares estimation for model predictive current control of permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2179–2190, Feb. 2021. doi: 10.1109/TPEL.2020.3006779

[94] 
H. Ahn, H. Park, C. Kim, and H. Lee, “A review of stateoftheart techniques for PMSM parameter identification,” J. Electr. Eng. Technol., vol. 15, no. 3, pp. 1177–1187, Mar. 2020. doi: 10.1007/s42835020003986

[95] 
M. S. Rafaq and J. W. Jung, “A comprehensive review of stateoftheart parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inf., vol. 16, no. 7, pp. 4747–4758, Jul. 2020. doi: 10.1109/TII.2019.2944413

[96] 
M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 2: Field weakening operation,” IEEE Trans. Ind. Inf., vol. 9, no. 2, pp. 648–657, May 2013. doi: 10.1109/TII.2012.2220353

[97] 
L. Chen, H. Xu, and X. D. Sun, “A novel strategy of control performance improvement for sixphase permanent magnet synchronous hub motor drives of EVs under new european driving cycle,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5628–5637, Jun. 2021. doi: 10.1109/TVT.2021.3079576

[98] 
M. Uddin, S. Mekhilef, M. Mubin, M. Rivera, and J. Rodriguez, “Model predictive torque ripple reduction with weighting factor optimization fed by an indirect matrix converter,” Electr. Power Compon. Syst., vol. 42, no. 10, pp. 1059–1069, Jun. 2014. doi: 10.1080/15325008.2014.913739

[99] 
Z. Song, F. Zhou, Y. Yu, R. Zhang, and S. Hu, “Openphase faulttolerant predictive control strategy for openendwinding permanent magnet synchronous machines without postfault controller reconfiguration,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3770–3781, May 2021.

[100] 
X. G. Wang, W. Xu, Y. Zhao, and X. H. Li, “Modified MPC algorithm for NPC inverter fed disc coreless permanent magnet synchronous motor,” IEEE Trans. Appl. Supercond., vol. 26, no. 7, p. 0608505, Oct. 2016.

[101] 
W. S. Wang, Y. Fan, S. Y. Chen, and Q. S. Zhang, “Finite control set model predictive current control of a fivephase PMSM with virtual voltage vectors and adaptive control set,” CES Trans. Electr. Mach. Syst., vol. 2, no. 1, pp. 136–141, Mar. 2018. doi: 10.23919/TEMS.2018.8326460

[102] 
Y. Yan, S. Wang, C. L. Xia, H. M. Wang, and T. N. Shi, “Hybrid control setmodel predictive control for fieldoriented control of VSIPMSM,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1622–1633, Dec. 2016. doi: 10.1109/TEC.2016.2598154

[103] 
Y. X. Luo and C. H. Liu, “A flux constrained predictive control for a sixphase PMSM motor with lower complexity,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5081–5093, Jul. 2019. doi: 10.1109/TIE.2018.2868301

[104] 
X. Gu, Sh en, X. M. Li, G. Z. Zhang, Z. Q. Wang, and T. N. Shi, “Improved vector selection based model predictive torque control for IPMSM,” IET Electr. Power Appl., vol. 14, no. 1, pp. 139–146, Jan. 2020. doi: 10.1049/ietepa.2019.0095

[105] 
P. Kakosimos, S. Bayhan, and H. AbuRub, “Predictive control with uniform switching transitions and reduced calculation requirements,” in Proc. 43rd Annu. Conf. IEEE Industrial Electronics Society, Beijing, China, 2017, pp. 6342–6347.

[106] 
W. Xie, X. C. Wang, F. X. Wang, W. Xu, R. M. Kennel, D. Gerling, and R. D. Lorenz, “Finitecontrolset model predictive torque control with a deadbeat solution for PMSM drives,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5402–5410, Sept. 2015. doi: 10.1109/TIE.2015.2410767

[107] 
Y. C. Zhang, D. L. Xu, J. L. Liu, S. Y. Gao, and W. Xu, “Performance improvement of modelpredictive current control of permanent magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3683–3695, Jul.–Aug. 2017. doi: 10.1109/TIA.2017.2690998

[108] 
Y. H. Li, Y. G. Qin, Y. F. Zhou, and C. H. Zhao, “Model predictive torque control for permanent magnet synchronous motor based on dynamic finitecontrolset using fuzzy control,” Energy Rep., vol. 6, no. S9, pp. 128–133, Dec. 2020.

[109] 
J. Rodriguez, J. Pontt, C. A. Silva, Correa, Lezana, Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495–503, Feb. 2007. doi: 10.1109/TIE.2006.888802

[110] 
Cortés, J. Rodríguez, Antoniewicz, and M. Kazmierkowski, “Direct power control of an AFE using predictive control,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2516–2523, Sept. 2008. doi: 10.1109/TPEL.2008.2002065

[111] 
R. O. Ramírez, C. R. Baier, F. Villarroel, J. R. Espinoza, J. Pou, and J. Rodríguez, “A hybrid FCSMPC with low and fixed switching frequency without steadystate error applied to a gridconnected CHB inverter,” IEEE Access, vol. 8, pp. 223637–223651, Dec. 2020.

[112] 
R. O. Ramírez, C. R. Baier, J. Espinoza, and F. Villarroel, “Finite control set MPC with fixed switching frequency applied to a grid connected singlephase cascade hbridge inverter,” Energies, vol. 13, no. 20, p. 5475, Oct. 2020. doi: 10.3390/en13205475

[113] 
X. Zhang, G. J. Tan, T. Xia, Q. Wang, and X. Wu, “Optimized switching finite control set model predictive control of NPC singlephase threelevel rectifiers,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10097–10108, Oct. 2020. doi: 10.1109/TPEL.2020.2978185

[114] 
C. Xiong, H. Xu, T. Guan, and Zhou, “A Constant switching frequency multiplevectorbased model predictive current control of fivephase PMSM with nonsinusoidal back EMF,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 1695–1707, Mar. 2020. doi: 10.1109/TIE.2019.2907502

[115] 
F. Zhang, T. Peng, H. B. Dan, J. H. Lin, and M. Su, “Modulated model predictive control of permanent magnet synchronous motor,” in Proc. IEEE Int. Conf. Industrial Electronics for Sustainable Energy Systems, Hamilton, New Zealand, 2018, pp. 130–133.

[116] 
S. S. Yeoh, T. Yang, L. Tarisciotti, C. I. Hill, S. Bozhko, and Zanchetta, “Permanentmagnet machinebased starter–generator system with modulated model predictive control,” IEEE Trans. Transp. Electrific., vol. 3, no. 4, pp. 878–890, Dec. 2017. doi: 10.1109/TTE.2017.2731626

[117] 
C. F. Garcia, C. A. Silva, J. R. Rodriguez, Zanchetta, and S. A. Odhano, “Modulated modelpredictive control with optimized overmodulation,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 1, pp. 404–413, Mar. 2019. doi: 10.1109/JESTPE.2018.2828198

[118] 
Q. Wang, H. T. Yu, C. Li, X. Y. Lang, S. S. Yeoh, T. Yang, M. Rivera, S. Bozhko, and Wheeler, “A lowcomplexity optimal switching timemodulated modelpredictive control for PMSM with threelevel NPC converter,” IEEE Trans. Transp. Electrific., vol. 6, no. 3, pp. 1188–1198, Sept. 2020. doi: 10.1109/TTE.2020.3012352

[119] 
S. G. Petkar, K. Eshwar, and V. K. Thippiripati, “A modified model predictive current control of permanent magnet synchronous motor drive,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1025–1034, Feb. 2021. doi: 10.1109/TIE.2020.2970671

[120] 
W. Chen, S. K. Zeng, G. Z. Zhang, T. N. Shi, and C. L. Xia, “A modified double vectors model predictive torque control of permanent magnet synchronous motor,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11419–11428, Nov. 2019. doi: 10.1109/TPEL.2019.2898901

[121] 
X. G. Zhang and B. S. Hou, “Double vectors model predictive torque control without weighting factor based on voltage tracking error,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2368–2380, Mar. 2018. doi: 10.1109/TPEL.2017.2691776

[122] 
Y. Xu, X. H. Ding, J. B. Wang, and C. Wang, “Robust threevectorbased lowcomplexity model predictive current control with supertwistingalgorithmbased secondorder slidingmode observer for permanent magnet synchronous motor,” IET Power Electron., vol. 12, no. 11, pp. 2895–2903, Sept. 2019. doi: 10.1049/ietpel.2018.5750

[123] 
L. Chen, H. Xu, X. D. Sun, and Y. F. Cai, “Threevectorbased model predictive torque control for a permanent magnet synchronous motor of EVs,” IEEE Trans. Transp. Electrific., vol. 7, no. 3, pp. 1454–1465, Sept. 2021. doi: 10.1109/TTE.2021.3053256

[124] 
Y. Xu, X. H. Ding, J. B. Wang, and Y. Y. Li, “Threevectorbased lowcomplexity model predictive current control with reduced steadystate current error for permanent magnet synchronous motor,” IET Electr. Power Appl., vol. 14, no. 2, pp. 305–315, Feb. 2020. doi: 10.1049/ietepa.2019.0108

[125] 
S. W. Kang, J. H. Soh, and R. Y. Kim, “Symmetrical threevectorbased model predictive control with deadbeat solution for IPMSM in rotating reference frame,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 159–168, Jan. 2020. doi: 10.1109/TIE.2018.2890490

[126] 
Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a threephase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323–1325, Feb. 2012. doi: 10.1109/TIE.2011.2157284

[127] 
Y. Yang, H. Q. Wen, and D. P. Li, “A fast and fixed switching frequency model predictive control with delay compensation for threephase inverters,” IEEE Access, vol. 5, pp. 17904–17913, Sept. 2017.

[128] 
T. Jin, X. Y. Shen, T. X. Su, and R. C. C. Flesch, “Model predictive voltage control based on finite control set with computation time delay compensation for PV systems,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 330–338, Mar. 2019. doi: 10.1109/TEC.2018.2876619

[129] 
X. D. Sun, J. H. Cao, G. Lei, Y. G. Guo, and J. G. Zhu, “A robust deadbeat predictive controller with delay compensation based on composite sliding mode observer for PMSMs,” IEEE Trans. Power Electron., vol. 36, no. 9, pp. 10742–10752, Sept. 2021. doi: 10.1109/TPEL.2021.3063226

[130] 
Y. X. Luo and C. H. Liu, “Model predictive control for a sixphase PMSM motor with a reduceddimension cost function,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 969–979, Feb. 2020. doi: 10.1109/TIE.2019.2901636

[131] 
Y. F. Han, C. Gong, L. M. Yan, H. Q. Wen, Y. G. Wang, and K. Shen, “Multiobjective finite control set model predictive control using novel delay compensation technique for PMSM,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 11193–11204, Oct. 2020. doi: 10.1109/TPEL.2020.2979122

[132] 
F. X. Wang, J. X. Wang, R. M. Kennel, and J. Rodríguez, “Fast speed control of AC machines without the proportionalintegral controller: Using an extended highgain state observer,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 9006–9015, Sept. 2019. doi: 10.1109/TPEL.2018.2889862

[133] 
F. X. Wang, H. T. Xie, Q. Chen, S. A. Davari, J. Rodríguez, and R. Kennel, “Parallel predictive torque control for induction machines without weighting factors,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1779–1788, Feb. 2020. doi: 10.1109/TPEL.2019.2922312

[134] 
P. Cortes, S. Kouro, B. La Rocca, R. Vargas, J. Rodriguez, J. I. Leon, S. Vazquez, and L. G. Franquelo, “Guidelines for weighting factors design in model predictive control of power converters and drives,” in Proc. IEEE Int. Conf. Industrial Technology, Churchill, Australia, 2009, pp. 1–7.

[135] 
R. U. Guazzelli, W. C. De Andrade Pereira, C. M. R. De Oliveira, A. G. De Castro, and M. L. De Aguiar, “Weighting factors optimization of predictive torque control of induction motor by multiobjective genetic algorithm,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6628–6638, Jul. 2019. doi: 10.1109/TPEL.2018.2834304

[136] 
M. K. Wu, X. D. Sun, J. G. Zhu, G. Lei, and Y. G. Guo, “Improved model predictive torque control for PMSM drives based on duty cycle optimization,” IEEE Trans. Magn., vol. 57, no. 2, pp. 1–5, Feb. 2021.

[137] 
Y. X. Luo and C. H. Liu, “Elimination of harmonic currents using a reference voltage vector basedmodel predictive control for a sixphase PMSM motor,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6960–6972, Jul. 2019. doi: 10.1109/TPEL.2018.2874893

[138] 
X. G. Zhang and Y. K. He, “Direct voltageselection based model predictive direct speed control for PMSM drives without weighting factor,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7838–7851, Aug. 2019. doi: 10.1109/TPEL.2018.2880906

[139] 
G. Z. Zhang, C. Chen, X. Gu, Z. Q. Wang, and X. M. Li, “An improved model predictive torque control for a twolevel inverter fed interior permanent magnet synchronous motor,” Electronics, vol. 8, no. 7, p. 769, Jul. 2019. doi: 10.3390/electronics8070769

[140] 
D. Sun, J. Su, C. Sun, and H. Nian, “A simplified MPFC with capacitor voltage offset suppression for the fourswitch threephase inverterfed PMSM drive,” IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7633–7642, Oct. 2019. doi: 10.1109/TIE.2018.2880699

[141] 
X. S. Wu, W. S. Song, and C. Xue, “Lowcomplexity model predictive torque control method without weighting factor for fivephase PMSM based on hysteresis comparators,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 4, pp. 1650–1661, Dec. 2018. doi: 10.1109/JESTPE.2018.2849320

[142] 
T. Geyer and D. E. Quevedo, “Multistep finite control set model predictive control for power electronics,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6836–6846, Dec. 2014. doi: 10.1109/TPEL.2014.2306939

[143] 
T. Geyer and D. E. Quevedo, “Performance of multistep finite control set model predictive control for power electronics,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1633–1644, Mar. 2015. doi: 10.1109/TPEL.2014.2316173

[144] 
Karamanakos, T. Geyer, and R. Aguilera, “Longhorizon direct model predictive control: Modified sphere decoding for transient operation,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6060–6070, Nov.–Dec. 2018. doi: 10.1109/TIA.2018.2850336

[145] 
R. Baidya, R. P. Aguilera, P. Acuña, T. Geyer, R. A. Delgado, D. E. Quevedo, and H. Du Toit Mouton, “Enabling multistep model predictive control for transient operation of power converters,” IEEE Open J. Ind. Electron. Soc., vol. 1, pp. 284–297, Oct. 2020.

[146] 
J. F. Hu, J. G. Zhu, G. Lei, G. Platt, and D. G. Dorrell, “Multiobjective modelpredictive control for highpower converters,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 652–663, Sept. 2013. doi: 10.1109/TEC.2013.2270557

[147] 
Y. J. Yu and X. Z. Wang, “Multistep predictive current control for NPC gridconnected inverter,” IEEE Access, vol. 7, pp. 157756–157765, Oct. 2019.

[148] 
W. Chen, X. H. Zhang, X. Gu, Y. Yan, and T. N. Shi, “Bandbased multistep predictive torque control strategy for PMSM drives,” IEEE Access, vol. 7, pp. 171411–171422, Nov. 2019.

[149] 
Y. L. Wang, W. Xie, X. C. Wang, W. B. Yang, M. F. Dou, S. J. Song, and D. Gerling, “Fast response model predictive torque and flux control with low calculation effort for PMSMs,” IEEE Trans. Ind. Inform., vol. 15, no. 10, pp. 5531–5540, Oct. 2019. doi: 10.1109/TII.2019.2900116

[150] 
T. Dorfling, H. Du Toit Mouton, T. Geyer, and Karamanakos, “Longhorizon finitecontrolset model predictive control with nonrecursive sphere decoding on an FPGA,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7520–7531, Jul. 2020. doi: 10.1109/TPEL.2019.2956213

[151] 
C. A. Agustin, J. T. Yu, C. K. Lin, J. Jai, and Y. S. Lai, “Triplevoltagevector modelfree predictive current control for fourswitch threephase inverterfed SPMSM based on discretespacevector modulation,” IEEE Access, vol. 9, pp. 60352–60363, Apr. 2021.

[152] 
M. Yang, X. Y. Lang, J. Long, and D. G. Xu, “Flux Immunity robust predictive current control with incremental model and extended state observer for PMSM drive,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9267–9279, Dec. 2017. doi: 10.1109/TPEL.2017.2654540

[153] 
M. Khalilzadeh and S. VaezZadeh, “A robust predictive torque and flux control for IPM motor drives without a cost function,” IEEE Trans. Power Electron., vol. 36, no. 7, pp. 8067–8075, Jul. 2021. doi: 10.1109/TPEL.2020.3041811

[154] 
F. X. Wang, K. K. Zuo, P. Tao, and J. Rodríguez, “High performance model predictive control for PMSM by using stator current mathematical model selfregulation technique,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13652–13662, Dec. 2020. doi: 10.1109/TPEL.2020.2994948

[155] 
K. S. Alam, M. Akter, D. Xiao, D. M. Zhang, and M. F. Rahman, “Asymptotically stable predictive control of gridconnected converter based on discrete space vector modulation,” IEEE Trans. Ind. Inf., vol. 15, no. 5, pp. 2775–2785, May 2019. doi: 10.1109/TII.2018.2876274

[156] 
R. Aguilera and D. E. Quevedo, “Predictive control of power converters: Designs with guaranteed performance,” IEEE Trans. Ind. Inf., vol. 11, no. 1, pp. 53–63, Feb. 2015. doi: 10.1109/TII.2014.2363933

[157] 
H. T. Nguyen and J. W. Jung, “Finite control set model predictive control to guarantee stability and robustness for surfacemounted PM synchronous motors,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8510–8519, Nov. 2018.

[158] 
A. Katkout, T. Nasser, and A. Essadki, “Novel predictive control for the IPMSM fed by the 3LSNPC inverter for EVAs: Modified Lyapunov function, computational efficiency, and delay compensation,” Math. Probl. Eng., vol. 2020, p. 2515107, Aug. 2020.

[159] 
G. Q. Bao, W. G. Qi, and T. He, “Direct torque control of PMSM with modified finite set model predictive control,” Energies, vol. 13, no. 1, pp. 234, Jan. 2020.

[160] 
X. D. Sun, T. Li, X. Tian, and J. G. Zhu, “Faulttolerant operation of a sixphase permanent magnet synchronous hub motor based on model predictive current control with virtual voltage vectors,” IEEE Trans. Energy Convers., vol. 37, no. 1, pp. 337–346, Mar. 2022. doi: 10.1109/TEC.2021.3109869

[161] 
X. D. Sun, T. Li, Z. Zhu, G. Lei, Y. G. Guo, and J. G. Zhu, “Speed sensorless model predictive current control based on finite position set for PMSHM drives,” IEEE Trans. Transp. Electrific., vol. 7, no. 4, pp. 2743–2752, Dec. 2021. doi: 10.1109/TTE.2021.3081436

[162] 
T. Yang, T. Kawaguchi, S. Hashimoto, and W. Jiang, “Switching sequence model predictive direct torque control of IPMSMs for EVs in switch opencircuit faulttolerant mode,” Energies, vol. 13, no. 21, p. 5593, Oct. 2020. doi: 10.3390/en13215593

[163] 
Y. X. Luo and C. H. Liu, “Pre and postfault tolerant operation of a sixphase PMSM motor using FCSMPC without controller reconfiguration,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 254–263, Jan. 2019. doi: 10.1109/TVT.2018.2883665

[164] 
G. Forstner, A. Kugi, and W. Kemmetmüller, “Faulttolerant torque control of a threephase permanent magnet synchronous motor with interturn winding short circuit,” Control Eng. Pract., vol. 113, p. 104846, Aug. 2021. doi: 10.1016/j.conengprac.2021.104846

[165] 
M. Abdelrahem, C. M. Hackl, J. Rodríguez, and R. Kennel, “Model reference adaptive system with finiteset for encoderless control of PMSGS in microgrid systems,” Energies, vol. 13, no. 18, p. 4844, Sept. 2020. doi: 10.3390/en13184844

[166] 
L. Sun, X. X. Li, and L. M. Chen, “Motor speed control with convex optimizationbased position estimation in the current loop,” IEEE Trans. Power Electron., vol. 36, no. 9, pp. 10906–10919, Sept. 2021. doi: 10.1109/TPEL.2021.3068309

[167] 
F. Liu, H. T. Li, L. Liu, R. M. Zou, and K. Z. Liu, “A control method for IPMSM based on active disturbance rejection control and model predictive control,” Mathematics, vol. 9, no. 7, p. 760, Apr. 2021. doi: 10.3390/math9070760

[168] 
H. J. Shi and X. C. Nie, “Composite control for disturbed directdriven surfacemounted permanent magnet synchronous generator with model prediction strategy,” Meas. Control, vol. 54, no. 5–6, pp. 1015–1025, Apr. 2021. doi: 10.1177/00202940211010829

[169] 
Z. Y. Sun, S. Xu, G. Z. Ren, C. X. Yao, and G. T. Ma, “A cascaded band based model predictive current control for PMSM drives,” IEEE Trans. Ind. Electron., 2022, DOI: 10.1109/TIE.2022.3176312.

[170] 
J. Yoo and K. H. Johansson, “Eventtriggered model predictive control with a statistical learning,” IEEE Trans. Syst. Man,Cybern. Syst., vol. 51, no. 4, pp. 2571–2581, Apr. 2021. doi: 10.1109/TSMC.2019.2916626

[171] 
D. W. Shi, J. Xue, L. X. Zhao, J. Z. Wang, and Y. Huang, “Eventtriggered active disturbance rejection control of DC torque motors,” IEEE/ASME Trans. Mechatron., vol. 22, no. 5, pp. 2277–2287, Oct. 2017. doi: 10.1109/TMECH.2017.2748887
