A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 9
Sep.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
H. Mo, Y. H. Meng, F.-Y. Wang, and D. R. Wu, “Interval type-2 fuzzy hierarchical adaptive cruise following-control for intelligent vehicles,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1658–1672, Sept. 2022. doi: 10.1109/JAS.2022.105806
Citation: H. Mo, Y. H. Meng, F.-Y. Wang, and D. R. Wu, “Interval type-2 fuzzy hierarchical adaptive cruise following-control for intelligent vehicles,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1658–1672, Sept. 2022. doi: 10.1109/JAS.2022.105806

Interval Type-2 Fuzzy Hierarchical Adaptive Cruise Following-Control for Intelligent Vehicles

doi: 10.1109/JAS.2022.105806
Funds:  This work was partially supported by the National Natural Science Foundation of China (61473048, 61074093, 61873321)
More Information
  • Intelligent vehicles can effectively improve traffic congestion and road traffic safety. Adaptive cruise following-control (ACFC) is a vital part of intelligent vehicles. In this paper, a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model, type-2 fuzzy control, feedforward + fuzzy proportion integration (PI) feedback (F+FPIF) control, and inverse longitudinal dynamics model of vehicles. Firstly, a traditional variable time headway model is improved considering the acceleration of the lead car. Secondly, an interval type-2 fuzzy logic controller (IT2 FLC) is designed for the upper structure of the ACFC system to simulate the driver’s operating habits. To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration, the control strategy of F+FPIF is given for the lower control structure. Thirdly, the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method (no lower controller for tracking desired acceleration) separately. Meanwhile, the proportion integration differentiation (PID), linear quadratic regulator (LQR), subsection function control (SFC) and type-1 fuzzy logic control (T1 FLC) are respectively compared with the IT2 FLC in control performance under different scenes. Finally, the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.

     

  • loading
  • [1]
    “Ministry of Public Security: The number of motor vehicles in China will reach 372 million in 2020,” 2021. [Online], Available: http://news.hexun.com/2021-01-07/202781759.html.
    [2]
    “World Health Organization: Global status report on road safety 2018,” 2020. [Online], Available: https://blog.csdn.net/weixin/39653948/article/details/105772992.
    [3]
    B. K. Chen, D. Sun, J. Zhou, W. F. Wong, and Z. J. Ding, “A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles,” Inf. Sci., vol. 529, pp. 59–72, Aug. 2020. doi: 10.1016/j.ins.2020.02.009
    [4]
    M. Hasenjäger, M. Heckmann, and H. Wersing, “A survey of personalization for advanced driver assistance systems,” IEEE Trans. Intell. Veh., vol. 5, no. 2, pp. 335–344, 2020.
    [5]
    T. C. Lin, S. Y. Ji, C. E. Dickerson, and D. Battersby, “Coordinated control architecture for motion management in ADAS systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 432–444, 2018. doi: 10.1109/JAS.2017.7510814
    [6]
    X. Yang, C. Lv, C. Long, H. J. Wang, D. P. Cao, E. Velenis, and F.-Y. Wang, “Advances in vision-based lane detection: Algorithms, integration, assessment, and perspectives on ACP-based parallel vision,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 645–664, 2018. doi: 10.1109/JAS.2018.7511063
    [7]
    X. P. Gao and X. L. Bian, “Autonomous driving of vehicles based on artificial intelligence,” J. Intell. Fuzzy Syst., vol. 41, no. 4, pp. 4955–4964, 2021. doi: 10.3233/JIFS-189982
    [8]
    Y. F. Ma, Z. Y. Wang, H. Yang, and L. Yang, “Artificial intelligence applications in the development of autonomous vehicles: A survey,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 315–329, 2020. doi: 10.1109/JAS.2020.1003021
    [9]
    L. Y. Xiao and F. Gao, “A comprehensive review of the development of adaptive cruise control systems,” Vehicle System Dynamics, vol. 48, no. 10, pp. 1167–1192, 2010. doi: 10.1080/00423110903365910
    [10]
    J. Huang, Y. M. Chen, X. Y. Peng, L. Hu, and D. P. Cao, “Study on the driving style adaptive vehicle longitudinal control strategy,” IEEE/CAA J. Autom. Sinica,, vol. 7, no. 4, pp. 1107–1115, 2020. doi: 10.1109/JAS.2020.1003261
    [11]
    R Pradhan, S Majhi, J Pradhan, and B Pati, “Antlion optimizer tuned PID controller based on bode ideal transfer function for automobile cruise control system,” J. Industrial Information Integration, vol. 9, pp. 45–52, 2018. doi: 10.1016/j.jii.2018.01.002
    [12]
    M. Zhu and H. Y. Chen, “Strategy for vehicle adaptive cruise control considering the reaction headway,” J. Mechanical Engineering, vol. 53, no. 24, pp. 144–150, 2017. doi: 10.3901/JME.2017.24.144
    [13]
    B. Ganji, A. Kouzani, S. Khoo, and M. Shams-Zahraei, “Adaptive cruise control of a HEV using sliding mode control,” Expert Syst. Appl., vol. 41, no. 2, pp. 607–615, 2014. doi: 10.1016/j.eswa.2013.07.085
    [14]
    C. C. Tsai, S. M. Hsieh, and C. T. Chen, “Fuzzy longitudinal controller design and experimentation for adaptive cruise control and stop&go,” J. Intelligent and Robotic Systems, vol. 59, no. 2, pp. 167–189, 2010. doi: 10.1007/s10846-010-9393-z
    [15]
    S. Li, Q. Guo, S. Xu, J. Duan, S. Li, C. Li, and K. Su, “Performance enhanced predictive control for adaptive cruise control system considering road elevation information,” IEEE Trans. Intell. Veh., vol. 2, no. 3, pp. 150–160, Sept. 2017. doi: 10.1109/TIV.2017.2736246
    [16]
    H. Ohno, “Analysis and modeling of human driving behaviors using adaptive cruise control,” Appl. Soft Comput., vol. 1, no. 3, pp. 237–243, 2001. doi: 10.1016/S1568-4946(01)00022-9
    [17]
    A. P. Bolduc, L. Guo, and Y. Jia, “Multimodel approach to personalized autonomous adaptive cruise control,” IEEE Trans. Intell. Veh., vol. 4, no. 2, pp. 321–330, 2019. doi: 10.1109/TIV.2019.2904419
    [18]
    L. Yang, J. Mao, K. Liu, J. F. Du, and J. Liu, “An adaptive cruise control method based on improved variable time headway strategy and particle swarm optimization algorithm,” IEEE Access, vol. 8, pp. 168333–168343, 2020. doi: 10.1109/ACCESS.2020.3023179
    [19]
    G. C. Ma, Z. D. Liu, B. F. Wang, and Z. Q. Qi, “Preceding vehicle optimal following control based on Kinematics models for advanced driver assistant system of motor vehicles,” J. Mechanical Engineerig, vol. 52, no. 18, pp. 118–125, 2016.
    [20]
    C. R. Lu, J. Dong, and L. Hu, “Energy-efficient adaptive cruise control for electric connected and autonomous vehicles,” IEEE Intell. Transportation Syst. Magazine, vol. 11, no. 3, pp. 42–55, 2019. doi: 10.1109/MITS.2019.2919556
    [21]
    D. Manolis, A. Spiliopoulou, F. Vandorou, and M. Papageorgiou, “Real time adaptive cruise control strategy for motorways,” Transportation Research Part C: Emerging Technologies, vol. 115, p. 102617, 2020.
    [22]
    K. Mattas, G. Botzoris, and B. Papadopoulos, “Safety aware fuzzy longitudinal controller for automated vehicles,” J. Traffic and Transportation Engineering (English Edition), vol. 8, no. 4, pp. 568–581, 2021. doi: 10.1016/j.jtte.2020.12.006
    [23]
    Z. C. Zhang and Y. Q. Wu, “Adaptive fuzzy tracking control of autonomous underwater vehicles with output constraints,” IEEE Trans. Fuzzy Syst., vol. 29, no. 5, pp. 1311–1319, 2021. doi: 10.1109/TFUZZ.2020.2967294
    [24]
    L. A. Zadeh, “Fuzzy set,” Inf. Control, vol. 18, no. 8, pp. 338–353, 1965.
    [25]
    L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-I,” Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975. doi: 10.1016/0020-0255(75)90036-5
    [26]
    F. Y. Wang, H. Mo, L. Zhao, and R. M. Li, Type-2 Fuzzy Sets and Logic, Beijing, China: Tsinghua Univ. Press, 2018 (in Chinese).
    [27]
    L. X. Wang, “A new look at type-2 fuzzy sets and type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Syst., vol. 25, no. 3, pp. 693–706, Jun. 2017. doi: 10.1109/TFUZZ.2016.2543746
    [28]
    H. Mo and F. Y. Wang, “Representation of interval type-2 fuzzy sets and their application,” Fuzzy Systems and Mathematics, vol. 28, no. 2, pp. 167–174, 2014.
    [29]
    D. R. Wu, “On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 832–848, 2012. doi: 10.1109/TFUZZ.2012.2186818
    [30]
    D. R. Wu and J. M. Mendel, “On the continuity of type-1 and interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 179–192, 2011. doi: 10.1109/TFUZZ.2010.2091962
    [31]
    Y. R. Bi, X. B. Lu, Z. Sun, D. Srinivasan, and Z. X. Sun, “Optimal type-2 fuzzy system for arterial traffic signal control,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 9, pp. 3009–3027, 2017.
    [32]
    H. Mo and X. X. HAO, “Linguistic dynamic analysis of traffic light timing design within the time-varying universe,” Acta Autom. Sinica, vol. 43, no. 12, pp. 2202–2212, 2017.
    [33]
    R. M. Li, Y. F. Huang, and J. Wang, “Long-term traffic volume prediction based on k-means gaussian interval type-2 fuzzy sets,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1344–1351, 2019.
    [34]
    R. M. Li, C. Y. Jiang, F. H. Zhu, and X. L. Chen, “Traffic flow data forecasting based on interval type-2 fuzzy sets theory,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 141–148, 2016. doi: 10.1109/JAS.2016.7451101
    [35]
    H. Mo, J. Wang, X. Li, and Z. L. Wu, “Linguistic dynamic modeling and analysis of psychological health state using interval type-2 fuzzy sets,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 4, pp. 366–373, 2015. doi: 10.1109/JAS.2015.7296531
    [36]
    M. F. Zarandi, S. Soltanzadeh, A. Mohammadi, and O. Castillo, “Designing a general type-2 fuzzy expert system for diagnosis of depression,” Appl. Soft Comput., vol. 80, pp. 329–341, 2019. doi: 10.1016/j.asoc.2019.03.027
    [37]
    C. Liu, H. Mo and F. Y. Wang, “Analysis and control of blood glucose situation for diabetic patients based on interval type-2 fuzzy sets,” Int. J. Fuzzy Syst., vol. 23, no. 4, pp. 1179–1193, Jun. 2021. doi: 10.1007/s40815-020-00918-6
    [38]
    E. Ontiveros, P. Melin, and O. Castillo, “Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis,” Inf. Sci., vol. 525, pp. 37–53, 2020. doi: 10.1016/j.ins.2020.03.059
    [39]
    Z. X. Wei, F. Doctor, Y. X. Liu, S. Z. Fan, and J. S. Shieh, “An optimized type-2 self-organizing fuzzy logic controller applied in anesthesia for propofol dosing to regulate BIS,” IEEE Trans. Fuzzy Syst., vol. 28, no. 6, pp. 1062–1072, 2020. doi: 10.1109/TFUZZ.2020.2969384
    [40]
    Z. Liu, Y. Zhang, and Y. N. Wang, “A type-2 fuzzy switching control system for biped robots,” IEEE Trans. Systems,Man,and Cybernetics,Part C (Applications and Reviews), vol. 37, no. 6, pp. 1202–1213, Nov. 2007. doi: 10.1109/TSMCC.2007.900649
    [41]
    T. Zhao, Q. Yu, S. Y. Dian, R. Guo, and S. C. Li, “Non-singleton general type-2 fuzzy control for a two-wheeled self-balancing robot,” Int. J. Fuzzy Syst., vol. 26, no. 6, pp. 1724–1737, 2019.
    [42]
    C. J. Kim and D. Chwa, “Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 677–687, 2015. doi: 10.1109/TFUZZ.2014.2321771
    [43]
    E. Aguiar, T. Fernandes, F. Nogueira, D. Silveira, M. Vellasco, and M. Ribeiro, “A new model to distinguish railhead defects based on set-membership type-2 fuzzy logic system,” Int. J. Fuzzy Syst., vol. 23, no. 4, pp. 1057–1069, 2021. doi: 10.1007/s40815-020-00945-3
    [44]
    E. Aguiar, R. Amaral, M. Vellasco, and M. Ribeiro, “An enhanced singleton type-2 fuzzy logic system for fault classification in a railroad switch machine,” Electric Power Systems Research, vol. 158, pp. 195–206, 2018. doi: 10.1016/j.jpgr.2017.12.018
    [45]
    S. Hassan, A. Khosravi, J. Jaafar, and M. Khanesar, “A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting,” Int. J. Electrical Power &Energy Systems, vol. 82, pp. 1–10, 2016.
    [46]
    G. Zheng and J. Xiao, “Forecasting study of power load based on interval type-2 logic method,” Electric and Control, vol. 16, no. 9, pp. 26–32, 2012.
    [47]
    A. Shakibjoo, M. Moradzadeh, S. Moussavi, and H. Afrakhte, “Online adaptive type-2 fuzzy logic control for load frequency of multi-area power system,” J. Intell. Fuzzy syst., vol. 37, no. 1, pp. 1033–1042, 2019. doi: 10.3233/JIFS-181963
    [48]
    T. C. Wang, X. H. Zhang, and Y. M. Li, “Type-2 fuzzy adaptive event-triggered saturation control for photovoltaic grid-connected power systems,” Int. J. Fuzzy Syst., vol. 23, no. 4, pp. 1150–1162, 2021. doi: 10.1007/s40815-021-01078-x
    [49]
    H. Mo, K. F. Yan, and X. M. Zhao, “Type-2 fuzzy comprehension evaluation for tourist attractive competency,” IEEE Trans. Computat. Soc. Syst., vol. 6, no. 1, pp. 96–102, 2019. doi: 10.1109/TCSS.2019.2891306
    [50]
    H. Mo, L. L. Wei, X. M. Zhao, Y. Q. Zeng, R. Z. Li, and F.-Y. Wang, “Linguistic dynamic analysis and evaluation based on partially connected type-2 fuzzy sets,” Int. J. Fuzzy Syst., vol. 21, no. 7, pp. 2147–2154, 2019. doi: 10.1007/s40815-019-00712-z
    [51]
    X. H. Pan and Y. M. Wang, “Evaluation of renewable energy sources In china using an interval type-2 fuzzy large-scale group risk evaluation method,” Appl. Soft Comput., vol. 108, p. 107458, 2021.
    [52]
    S. M. Chen and C. Y. Wang, “Fuzzy decision making systems based on interval type-2 fuzzy systems,” Inf. Sci., vol. 242, pp. 1–21, 2013. doi: 10.1016/j.ins.2013.04.005
    [53]
    S. M. Chen and J. A. Hong, “Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets and the TOPSIS method,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 44, no. 12, pp. 1665–1673, 2014. doi: 10.1109/TSMC.2014.2314724
    [54]
    S. K. Raju and G. N. Pillai, “Design and implementation of type-2 fuzzy logic controller for DFIG-based wind energy systems in distribution networks,” IEEE Trans. Sustainable Energy, vol. 7, no. 1, pp. 345–353, 2016. doi: 10.1109/TSTE.2015.2496170
    [55]
    K. Naik, C. Gupta, and E. Fernandez, “Advanced type-2 fuzzy logic-based pitch-angle control strategy for wind energy system,” Wind Engineering, vol. 44, no. 1, pp. 75–92, 2020. doi: 10.1177/0309524X19849839
    [56]
    K. Naik, C. Gupta and E. Fernandez, “Design and implementation of interval type-2 fuzzy logic-PI based adaptive controller for DFIG based wind energy system,” Int. J. Electrical Power and Energy Syst., vol. 115, p. 105468, 2020.
    [57]
    X. M. Zhao, H. Mo, K. F. Yan, and L. L. Li, “Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 178–186, 2020.
    [58]
    H. Mo, X. M. Zhao, and F.-Y. Wang, “Application of interval type-2 fuzzy sets in unmanned vehicle visual guidance,” Int. J. Fuzzy Syst., vol. 21, no. 6, pp. 1661–1668, 2019. doi: 10.1007/s40815-019-00680-4
    [59]
    D. Phan, A. Bab-Hadiashar, M. Fayyazi, R. Hoseinnezhadet, R. Jazar, and H. Khayyam, “Interval type-2 fuzzy logic control for energy management of hybrid electric autonomous vehicles,” IEEE Trans. Intell. Veh., vol. 6, no. 2, pp. 210–220, Jun. 2021. doi: 10.1109/TIV.2020.3011954
    [60]
    S. Abrazeh, A. Parvaresh, S. R. Mohseni, M. J. Zeitouni, M. Gheisarnejad, and M. H. Khooban, “Nonsingular terminal sliding mode control with ultra-local model and single input interval type-2 fuzzy logic control for pitch control of wind turbines,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 690–700, 2021. doi: 10.1109/JAS.2021.1003889
    [61]
    L. Cervantes and O. Castillo, “Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control,” Inf. Sci., vol. 324, pp. 247–256, 2015. doi: 10.1016/j.ins.2015.06.047
    [62]
    V. Singh, R. Dev, N. K. Dhar, P. Agrawal, and N. Verma, “Adaptive type-2 fuzzy approach for filtering salt and pepper noise in grayscale images,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 3170–3176, Oct. 2018. doi: 10.1109/TFUZZ.2018.2805289
    [63]
    P. D. Liu and H. Gao, “A novel green supplier selection method based on the interval type-2 fuzzy prioritized choquet bonferroni means,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1549–1566, 2021. doi: 10.1109/JAS.2020.1003444
    [64]
    D. R. Wu, Z. G. Zeng, H. Mo, and F.-Y. Wang, “Interval type-2 fuzzy sets and systems: Overview and outlook,” Acta Autom. Sinica, vol. 46, no. 8, pp. 1539–1556, 2020.
    [65]
    F.-Y. Wang and H. Mo, “Some fundamental issues on type-2 fuzzy sets,” Acta Autom. Sinica, vol. 43, no. 7, pp. 1114–1141, 2017.
    [66]
    H. Mo, F.-Y. Wang, M. Zhou, R. M. Li, and Z. Q. Xiao, “Footprint of uncertainty for type-2 fuzzy set,” Inf. Sci., vol. 272, pp. 96–110, 2014. doi: 10.1016/j.ins.2014.02.092
    [67]
    H. Mo and F.-Y. Wang, “Linguistic Dynamic Systems and Type-2 Fuzzy Logic,” Science and Technology of China Press, 2013 (in Chinese).
    [68]
    J. M. Mendel, “Uncertainty, fuzzy logic, and signal processing,” Signal Processing, vol. 80, no. 6, pp. 913–933, 2000. doi: 10.1016/S0165-1684(00)00011-6
    [69]
    L. A. Zadeh, “Fuzzy logic = Computing with words,” IEEE Trans. Fuzzy Syst., vol. 4, no. 2, pp. 103–111, 1996. doi: 10.1109/91.493904
    [70]
    S. Greenfield and F. Chiclana, “The stratic defuzzifier for discretised general type-2 fuzzy sets,” Inf. Sci., vol. 551, pp. 83–99, Jun. 2021. doi: 10.1016/j.ins.2020.10.062
    [71]
    D. R. Wu, “Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: Overview and comparisons,” IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 80–99, 2013. doi: 10.1109/TFUZZ.2012.2201728
    [72]
    X. M. Li and Y. Chen, “Discrete non-iterative centroid type-reduction algorithms on general type-2 fuzzy logic systems,” Int. J. Fuzzy Syst., vol. 23, no. 3, pp. 704–715, 2021. doi: 10.1007/s40815-020-00996-6
    [73]
    G. Ruiz-Garcia, H. Hagras, H. Pomares, and I. Rojas, “Toward a fuzzy logic system based on general forms of interval type-2 fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 27, no. 12, pp. 2381–2395, Dec. 2019. doi: 10.1109/TFUZZ.2019.2898582
    [74]
    Y. Chen and J. X. Yang, “Study on center-of-sets type-reduction of interval type-2 fuzzy logic systems with noniterative algorithms,” J. Intelligent and Fuzzy syst., vol. 40, no. 6, pp. 11099–11106, 2021. doi: 10.3233/JIFS-202264
    [75]
    A. Torshizi, M. Zarandi, and H. Zakeri, “On type-reduction of type-2 fuzzy sets: A review,” Appl. Soft Comput., vol. 27, pp. 614–627, 2015. doi: 10.1016/j.asoc.2014.04.031
    [76]
    B. Ling and M. S. Song, “Research on vehicle distance control strategy of automotive adaptive cruise control systems,” Computer Integrated Manufacturing Systems, vol. 34, no. 11, pp. 143–148, 2017.
    [77]
    F. Broqua, “Cooperative driving: Basic concepts and a first assessment of “intelligent cruise control” strategies,” in Proc. Drive Conf. Advanced Telematics in Road Transport, 1991, vol.2, pp. 908–929.
    [78]
    D. Yanakiev and I. Kanellakopoulos, “Nonlinear spacing policies for automated heavy-duty vehicles,” IEEE Trans. Veh. Technol., vol. 47, no. 4, pp. 1365–1377, 1998. doi: 10.1109/25.728529
    [79]
    R. Rajamani and C. Zhu, “Semi-autonomous adaptive cruise control system,” IEEE Trans. Veh. Technol., vol. 51, no. 5, pp. 1186–1192, 2002. doi: 10.1109/TVT.2002.800617
    [80]
    D. R. Wu and J. M. Mendel, “Enhanced karnik-mendel algorithms,” IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 923–934, 2009. doi: 10.1109/TFUZZ.2008.924329
    [81]
    V. Milanés, S. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, “Cooperative adaptive cruise control in real traffic situations,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 1, pp. 296–305, 2014. doi: 10.1109/TITS.2013.2278494
    [82]
    S. X. Wen, G. Guo, B. Chen, and X. Gao, “Cooperative adaptive cruise control of vehicles using a resource-efficient communication mechanism,” IEEE Trans. Intell. Veh., vol. 4, no. 1, pp. 127–140, Mar. 2019. doi: 10.1109/TIV.2018.2886676
    [83]
    F. Navas, V. Milanés, C. Flores, and F. Nashashibi, “Multi-model adaptive control for CACC applications,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2, pp. 1206–1216, Feb. 2021. doi: 10.1109/TITS.2020.2964320
    [84]
    Z. Chen and B. B. Park, “Preceding vehicle identification for cooperative adaptive cruise control platoon forming,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 1, pp. 308–320, Jan. 2020. doi: 10.1109/TITS.2019.2891353
    [85]
    K. Dey, L. Yan, X. Wang, Y. Wang, H. Y. Shen, M. Chowdhury, L. Yu, C. X. Qiu, and V. Soundararaj, “A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC),” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 491–509, 2016. doi: 10.1109/TITS.2015.2483063
    [86]
    D. Z. Xiong, D. H. Zhang, X. G. Zhao, and Y. W. Zhao, “Deep learning for EMG-based human-machine interaction: A review,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 512–533, 2021. doi: 10.1109/JAS.2021.1003865
    [87]
    S. M. Liu, Y. F. Xia, Z. S. Shi, H. Yu, Z. Q. Li, and J. G. Lin, “Deep learning in sheet metal bending with a novel theory-guided deep neural network,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 565–581, 2021. doi: 10.1109/JAS.2021.1003871
    [88]
    X. L. Zhang, J. Yang, T. Lin, and Y. B. Ying,, “Food and agro-product quality evaluation based on spectroscopy and deep learning: A review,” Trends in Food Science &Technology, vol. 112, pp. 431–441, 2021.
    [89]
    I. Ahmed, S. Din, G. Jeon, F. Piccialli, and G. Fortino, “owards collaborative robotics in top view surveillance: A framework for multiple object tracking by detection using deep learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1253–1270, 2021. doi: 10.1109/JAS.2020.1003453
    [90]
    B. Mao, F. Tang, Z. Fadlullah, and N. Kato, “An intelligent route computation approach based on real-time deep learning strategy for software defined communication systems,” IEEE Trans. Emerging Topics Computing, vol. 9, no. 3, pp. 1554–1565, 2021. doi: 10.1109/TETC.2019.2899407
    [91]
    Y. H. Huang, D. W. Chen, W. D. Zhao, and H. Mo, “Deep fuzzy system algorithms based on deep learning and input sharing for regression application,” Int. J. Fuzzy Syst., vol. 23, no. 3, pp. 727–742, 2021. doi: 10.1007/s40815-020-00998-4
    [92]
    W. D. Zhao, D. W. Chen, Y. Q. Zhuo, and Y. H. Huang, “Deep neural fuzzy system algorithm and its regression application,” Acta Autom. Sinica, vol. 46, no. 11, pp. 2350–2358, 2020.
    [93]
    M. Shirzadeh, A. Amirkhani, N. Tork, and H. Taghavifar, “Trajectory tracking of a quadrotor using a robust adaptive type-2 fuzzy neural controller optimized by cuckoo algorithm,” ISA Trans., vol. 114, pp. 171–190, 2021. doi: 10.1016/j.isatra.2020.12.047
    [94]
    J. J. Wang and T. Kumbasar, “Parameter optimization of interval type-2 fuzzy neural networks based on PSO and BBBC methods,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 247–257, 2019. doi: 10.1109/JAS.2019.1911348
    [95]
    H. G. Han, J. M. Li, X. L. Wu, and J. F. Qiao, “Cooperative strategy for constructing interval type-2 fuzzy neural network,” Neurocomputing, vol. 365, pp. 249–260, 2019. doi: 10.1016/j.neucom.2019.07.004

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(9)

    Article Metrics

    Article views (537) PDF downloads(96) Cited by()

    Highlights

    • The traditional variable time headway model is improved by considering the influence of acceleration of lead car on car-following safety distance, and used as the safety distance model of the vehicle following system. Meanwhile, its stability is proved
    • An interval type-2 fuzzy logic controller (IT2 FLC), which has no relation to the parameters of vehicle model, is designed for the upper control structure to simulate the driver's operating habits. It takes relative speed and distance difference as the input variables, the desired acceleration as the output variable
    • "Feedforward + fuzzy PI feedback" control is utilized for the lower structure to improve the tracking speed and accuracy of the desired acceleration

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return