A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 9
Sep.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. G. Liu, G. X. Yuan, and X. Luo, “Symmetry and non-negativity-constrained matrix factorization for community detection,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1691–1693, Sept. 2022. doi: 10.1109/JAS.2022.105794
Citation: Z. G. Liu, G. X. Yuan, and X. Luo, “Symmetry and non-negativity-constrained matrix factorization for community detection,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1691–1693, Sept. 2022. doi: 10.1109/JAS.2022.105794

Symmetry and Nonnegativity-Constrained Matrix Factorization for Community Detection

doi: 10.1109/JAS.2022.105794
More Information
  • loading
  • Zhigang Liu and Guangxiao Yuan contributed equally to this work.
  • [1]
    S. Fortunato and D. Hric, “Community detection in networks: A user guide,” Physics Reports, vol. 659, pp. 1−44, Nov. 2016.
    [2]
    D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Proc. NIPS, Cambridge, USA, Feb. 2001, pp. 556−562.
    [3]
    C. Leng, H. Zhang, G. Cai, I. Cheng, and A. Basu, “Graph regularized Lp smooth non-negative matrix factorization for data representation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 584−595, Mar. 2019.
    [4]
    X. Ma, D. Dong, and Q. Wang, “Community detection in multi-layer networks using joint nonnegative matrix factorization,” IEEE Trans. Knowledge and Data Engineering, vol. 31, no. 2, pp. 273−286, Feb. 2019.
    [5]
    L. Yang, X. C. Cao, D. Jin, X. Wang, and D. Meng, “A unified semi-supervised community detection framework using latent space graph regularization,” IEEE Trans. Cybernetics, vol. 45, no. 11, pp. 2585−2598, Nov. 2015.
    [6]
    F. Ye, C. Chen, Z. Wen, Z. Zheng, W. Chen, and Y. Zhou, “Homophily preserving community detection,” IEEE Trans. Neural Networks and Learning Systems, vol. 31, no. 8, pp. 2903−2915, Aug. 2020.
    [7]
    X. Luo, Z. Liu, L. Jin, Y. Zhou, and M. Zhou, “Symmetric nonnegative matrix factorization-based community detection models and their convergence analysis,” IEEE Trans. Neural Networks and Learning Systems, vol. 33, no. 3, pp. 1203−1215, Mar. 2022.
    [8]
    Z. Liu, X. Luo, and M. Zhou, “Symmetry-constrained non-negative matrix factorization approach for highly-accurate community detection,” in Proc. 17th Int. Conf. Automation Science and Engineering, Lyon, France, Aug. 2021, pp. 1521−1526.
    [9]
    C. He, X. Fei, Q. Cheng, H. Li, Z. Hu, and Y. Tang, “A survey of community detection in complex networks using nonnegative matrix factorization,” IEEE Trans. Computational Social Systems, vol. 9, no. 2, pp. 440−457, Apr. 2022.
    [10]
    J. Leskovec and R. Sosic, “SNAP: A general-purpose network analysis and graph-mining library,” ACM Trans. Intelligent Systems and Technology, vol. 8, no. 1, pp. 1, Jun. 2016.
    [11]
    D. Cai, X. F. He, J. W. Han, and T. S. Huang, “Graph regularized nonnegative matrix factorization for data representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1548−1560, Aug. 2011.
    [12]
    B. J. Sun, H. W. Shen, J. H. Gao, W. T. Ouyang, and X. Q. Cheng, “A non-negative symmetric encoder-decoder approach for community detection,” in Proc. ACM Conf. Information and Knowledge Management, Singapore, Nov. 2017, pp. 597−606.
    [13]
    D. Kuang, S. Yun, and H. Park, “SymNMF: Nonnegative low-rank approximation of a similarity matrix for graph clustering,” J. Global Optimization, vol. 62, no. 3, pp. 545−574, Jul. 2015.
    [14]
    B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, USA, 2014, pp. 701−710.
    [15]
    J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-scale information network embedding,” in Proc. 24th Int. Conf. World Wide Web, Florence, Italy, 2015, pp. 1067−1077.
    [16]
    X. Luo, Y. Yuan, S. L. Chen, N. Y. Zeng, and Z. D. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowledge and Data Engineering, vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (173) PDF downloads(34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return