IEEE/CAA Journal of Automatica Sinica
Citation: | L. Chen, Z. Lin, H. Garcia de Marina, Z. Sun, and M. Feroskhan, “Maneuvering angle rigid formations with global convergence guarantees,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1464–1475, Aug. 2022. doi: 10.1109/JAS.2022.105749 |
[1] |
H. S. Ahn, Formation Control. Cham, Germany: Springer, 2020.
|
[2] |
Y. G. Liu and G. Nejat, “Robotic urban search and rescue: A survey from the control perspective,” J. Intell. Robot. Syst., vol. 72, no. 2, pp. 147–165, Mar. 2013. doi: 10.1007/s10846-013-9822-x
|
[3] |
J. Y. Hu, P. Bhowmick, I. Jang, F. Arvin, and A. Lanzon, “A decentralized cluster formation containment framework for multirobot systems,” IEEE Trans. Robot., vol. 37, no. 6, pp. 1936–1955, Dec. 2021. doi: 10.1109/TRO.2021.3071615
|
[4] |
Q. Wang, Y. Z. Wang, and H. X. Zhang, “The formation control of multi-agent systems on a circle,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 148–154, Jan. 2016.
|
[5] |
S. Y. Zhao, “Affine formation maneuver control of multiagent systems,” IEEE Trans. Automat. Contr., vol. 63, no. 12, pp. 4140–4155, Dec. 2018. doi: 10.1109/TAC.2018.2798805
|
[6] |
Z. M. Han, L. L. Wang, Z. Y. Lin, and R. H. Zheng, “Formation control with size scaling via a complex Laplacian-based approach,” IEEE Trans. Cybern., vol. 46, no. 10, pp. 2348–2359, Oct. 2015.
|
[7] |
L. M. Chen, H. G. De Marina, and M. Cao, “Maneuvering formations of mobile agents using designed mismatched angles,” IEEE Trans. Automat. Contr., vol. 67, no. 4, pp. 1655–1668, Apr. 2021.
|
[8] |
X. Fang, X. L. Li, and L. H. Xie, “Distributed formation maneuver control of multiagent systems over directed graphs,” IEEE Trans. Cybern., 2021, DOI: 10.1109/TCYB.2020.3044581.
|
[9] |
A. L. Yang, W. Naeem, and M. R. Fei, “Decentralised formation control and stability analysis for multi-vehicle cooperative manoeuvre,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 92–100, Jan. 2014. doi: 10.1109/JAS.2014.7004625
|
[10] |
X. W. Dong and G. Q. Hu, “Time-varying formation control for general linear multi-agent systems with switching directed topologies,” Automatica, vol. 73, pp. 47–55, Nov. 2016. doi: 10.1016/j.automatica.2016.06.024
|
[11] |
A. Mondal, L. Behera, S. R. Sahoo, and A. Shukla, “A novel multi-agent formation control law with collision avoidance,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 558–568, Jul. 2017. doi: 10.1109/JAS.2017.7510565
|
[12] |
Y. J. Lin, Z. Y. Lin, Z. Y. Sun, and B. D. O. Anderson, “A unified approach for finite-time global stabilization of affine, rigid, and translational formation,” IEEE Trans. Automat. Contr., vol. 67, no. 4, pp. 1869–1881, Apr. 2022. doi: 10.1109/TAC.2021.3084247
|
[13] |
S. Y. Zhao and D. Zelazo, “Translational and scaling formation maneuver control via a bearing-based approach,” IEEE Trans. Contr. Netw. Syst., vol. 4, no. 3, pp. 429–438, Sep. 2017. doi: 10.1109/TCNS.2015.2507547
|
[14] |
Z. M. Han, K. X. Guo, L. H. Xie, and Z. Y. Lin, “Integrated relative localization and leader-follower formation control,” IEEE Trans. Automat. Contr, vol. 64, no. 1, pp. 20–34, Jan. 2018.
|
[15] |
T. R. Han, Z. Y. Lin, R. H. Zheng, and M. Y. Fu, “A barycentric coordinate-based approach to formation control under directed and switching sensing graphs,” IEEE Trans. Cybern., vol. 48, no. 4, pp. 1202–1215, Apr. 2017.
|
[16] |
Z. X. Liu, Y. B. Li, F. Y. Wang, and Z. Q. Chen, “Reduced-order observer-based leader-following formation control for discrete-time linear multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1715–1723, Oct. 2020.
|
[17] |
Z. Y. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, Mar. 2020. doi: 10.1109/JAS.2020.1003057
|
[18] |
H. G. De Marina, B. Jayawardhana, and M. Cao, “Distributed rotational and translational maneuvering of rigid formations and their applications,” IEEE Trans. Robot., vol. 32, no. 3, pp. 684–697, Jun. 2016. doi: 10.1109/TRO.2016.2559511
|
[19] |
M. H. Trinh and H. S. Ahn, “Finite-time bearing-based maneuver of acyclic leader-follower formations,” IEEE Contr. Syst. Lett., vol. 6, pp. 1004–1009, Jun. 2021.
|
[20] |
X. L. Li, M. J. Er, G. H. Yang, and N. Wang, “Bearing-based formation manoeuvre control of nonholonomic multi-agent systems,” Int. J. Syst. Sci., vol. 50, no. 16, pp. 2993–3002, Nov. 2019. doi: 10.1080/00207721.2019.1692094
|
[21] |
M. H. Trinh, Q. Van Tran, D. Van Vu, P. D. Nguyen, and H. S. Ahn, “Robust tracking control of bearing-constrained leader-follower formation,” Automatica, vol. 131, p. 109733, Sep. 2021.
|
[22] |
S. Y. Zhao, Z. H. Li, and Z. T. Ding, “Bearing-only formation tracking control of multiagent systems,” IEEE Trans. Automat. Contr., vol. 64, no. 11, pp. 4541–4554, Nov. 2019. doi: 10.1109/TAC.2019.2903290
|
[23] |
L. M. Chen, M. Cao, and C. J. Li, “Angle rigidity and its usage to stabilize multiagent formations in 2-D,” IEEE Trans. Automat. Contr., vol. 66, no. 8, pp. 3667–3681, Aug. 2021. doi: 10.1109/TAC.2020.3025539
|
[24] |
G. S. Jing, G. F. Zhang, H. W. J. Lee, and L. Wang, “Angle-based shape determination theory of planar graphs with application to formation stabilization,” Automatica, vol. 105, pp. 117–129, Jul. 2019. doi: 10.1016/j.automatica.2019.03.026
|
[25] |
L. M. Chen, M. M. Shi, H. G. De Marina, and M. Cao, “Stabilizing and maneuvering angle rigid multi-agent formations with double-integrator agent dynamics,” IEEE Trans. Contr. Netw. Syst., 2022, DOI: 10.1109/TCNS.2022.3153885.
|
[26] |
J. Yang, X. M. Wang, S. Baldi, S. Singh, and S. Farì, “A software-in-the-loop implementation of adaptive formation control for fixed-wing UAVs,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1230–1239, Sept. 2019. doi: 10.1109/JAS.2019.1911702
|
[27] |
G. S. Jing and L. Wang, “Multiagent flocking with angle-based formation shape control,” IEEE Trans. Automat. Contr., vol. 65, no. 2, pp. 817–823, Feb. 2020. doi: 10.1109/TAC.2019.2917143
|
[28] |
Z. Y. Lin, L. L. Wang, Z. Y. Chen, M. Y. Fu, and Z. M. Han, “Necessary and sufficient graphical conditions for affine formation control,” IEEE Trans. Automat. Contr., vol. 61, no. 10, pp. 2877–2891, Oct. 2016. doi: 10.1109/TAC.2015.2504265
|
[29] |
L. M. Chen, J. Mei, C. J. Li, and G. F. Ma, “Distributed leader-follower affine formation maneuver control for high-order multiagent systems,” IEEE Trans. Automat. Control, vol. 65, no. 11, pp. 4941–4948, Nov. 2020. doi: 10.1109/TAC.2020.2986684
|
[30] |
L. M. Chen and Z. Y. Sun, “Globally stabilizing triangularly angle rigid formations,” IEEE Trans. Autom. Contr., 2022, DOI: 10.1109/TAC.2022.3151567.
|
[31] |
R. Connelly, “Generic global rigidity,” Discrete Comput. Geom., vol. 33, no. 4, pp. 549–563, Apr. 2005. doi: 10.1007/s00454-004-1124-4
|
[32] |
X. Fang, X. L. Li, and L. H. Xie, “Angle-displacement rigidity theory with application to distributed network localization,” IEEE Trans. Automat. Contr., vol. 66, no. 6, pp. 2574–2587, Jun. 2021. doi: 10.1109/TAC.2020.3012630
|
[33] |
D. P. Yang, W. Ren, and X. D. Liu, “Fully distributed adaptive sliding-mode controller design for containment control of multiple Lagrangian systems,” Syst. Control Lett., vol. 72, pp. 44–52, Oct. 2014. doi: 10.1016/j.sysconle.2014.07.006
|
[34] |
L. G. Wu, J. X. Liu, S. Vazquez, and S. K. Mazumder, “Sliding mode control in power converters and drives: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 392–406, Mar. 2022. doi: 10.1109/JAS.2021.1004380
|
[35] |
M. C. Park, Z. Y. Sun, M. H. Trinh, B. D. O. Anderson, and H. S. Ahn, “Distance-based control of K4 formation with almost global convergence,” in Proc. IEEE 55th Conf. Decision and Control, Las Vegas, USA, 2016, pp. 904–909.
|
[36] |
M. C. Park, Z. Y. Sun, B. D. O. Anderson, and H. S. Ahn, “Distance-based control of K n formations in general space with almost global convergence,” IEEE Trans. Automat. Contr., vol. 63, no. 8, pp. 2678–2685, Aug. 2018. doi: 10.1109/TAC.2017.2776524
|
[37] |
R. Kennedy and C. J. Taylor, “Network localization from relative bearing measurements,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, USA, 2014, pp. 149–156.
|
[38] |
G. R. Duan, “High-order system approaches: I. Fully-actuated systems and parametric designs,” Acta Autom. Sinica, vol. 46, no. 7, pp. 1333–1345, Jul. 2020.
|