IEEE/CAA Journal of Automatica Sinica
Citation: | S. W. Wang, X. Q. Zhu, W. P. Ding, and A. A. Yengejeh, “Cyberbullying and cyberviolence detection: A triangular user-activity-content view,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1384–1405, Aug. 2022. doi: 10.1109/JAS.2022.105740 |
[1] |
D. Olweus, “Victimization by peers: Antecedents and long-term outcomes,” in Social Withdrawal, Inhibition, and Shyness in Childhood, K. H. Rubin and J. Asendorpf, Eds. Hillsdale, Canada: Psychology Press, 1993, pp. 315–341.
|
[2] |
K. Smith, K. C. Madsen, and J. C. Moody, “What causes the age decline in reports of being bullied at school? Towards a developmental analysis of risks of being bullied” Educ. Res., vol. 41, no. 3, pp. 267–285, 1999. doi: 10.1080/0013188990410303
|
[3] |
A. Lenhart, M. Madden, A. Smith, K. Purcell, K. Zickuhr, and L. Rainie, “Teens, kindness and cruelty on social network sites: How American teens navigate the new world of “digital citizenship”.” [Online]. Available: https://eric.ed.gov/?id=ED537516.
|
[4] |
National Crime Prevention Council, An explanation of the growing phenomenon of cyberbullying. [Online]. Available: https://www.ncpc.org/resources/cyberbullying//what-is-cyberbullying/.
|
[5] |
E. Englander, E. Donnerstein, R. Kowalski, C. A. Lin, and K. Parti, “Defining cyberbullying,” Pediatrics, vol. 140, no. S2, pp. S148–S151, Nov. 2017.
|
[6] |
T. Beran and Q. Li, “Cyber-harassment: A study of a new method for an old behavior,” J. Educ. Comput. Res., vol. 32, no. 3, pp. 265–277, Apr. 2005. doi: 10.2190/8YQM-B04H-PG4D-BLLH
|
[7] |
P. Bocij, Cyberstalking: Harassment in the Internet Age and How to Protect Your Family. Westport, USA: Greenwood Publishing Group, 2004.
|
[8] |
B. W. Reyns and B. S. Fisher, “Being pursued online: Applying cyberlifestyle–routine activities theory to cyberstalking victimization,” Crim. Justice Behav., vol. 38, no. 11, pp. 1149–1169, Nov. 2011. doi: 10.1177/0093854811421448
|
[9] |
J. M. Allen and G. H. Norris, “Is genocide different? Dealing with hate speech in a post-genocide society,” J. Int. Law Int. Relat., vol. 7, 2011.
|
[10] |
B. Perry, B. Levin, P. Iganski, R. Blazak, and F. M. Lawrence, Hate Crimes. Westport, USA: Greenwood Publishing Group, 2009.
|
[11] |
J. Hawdon, A. Oksanen, and Räsänen, “Online extremism and online hate: Exposure among adolescents and young adults in four nations,” Nord. Inf., vol. 37, no. 3–4, pp. 29–37, Dec. 2015.
|
[12] |
National Center for Education Statistics, Bullying at school and electronic bullying. [Online]. Available: https://nces.ed.gov/programs/coe/indicator/a10/.
|
[13] |
J. Wang, R. J. Iannotti, and T. R. Nansel, “School bullying among adolescents in the united states: Physical, verbal, relational, and cyber,” J. Adolesc. Health, vol. 45, no. 4, pp. 368–75, Oct. 2009. doi: 10.1016/j.jadohealth.2009.03.021
|
[14] |
L. Cheng, Y. N. Silva, D. Hall, and H. Liu, “Session-based cyberbullying detection: Problems and challenges,” IEEE Internet Comput., vol. 25, no. 2, pp. 66–72, Mar.–Apr. 2021. doi: 10.1109/MIC.2020.3032930
|
[15] |
V. Balakrishnan, S. Khan, T. Fernandez, and H. R. Arabnia, “Cyberbullying detection on twitter using big five and dark triad features,” Pers. Individ. Differ., vol. 141, pp. 252–257, Apr. 2019. doi: 10.1016/j.paid.2019.01.024
|
[16] |
C. Iwendi, G. Srivastava, S. Khan, and P. K. R. Maddikunta, “Cyberbullying detection solutions based on deep learning architectures,” Multimedia Syst., pp. 1–14, 2020.
|
[17] |
B. Haidar, M. Chamoun, and F. Yamout, “Cyberbullying detection: A survey on multilingual techniques,” in Proc. European Modelling Symp., Pisa, Italy, 2016, pp. 165–171.
|
[18] |
A. Alakrot and N. S. Nikolov, “A survey of text mining approaches to cyberbullying detection in online communication flows,” in Proc. NUI Galway-UL Alliance 5th Postgraduate Research Day 2015, Galway, Ireland.
|
[19] |
S. Salawu, Y. L. He, and J. Lumsden, “Approaches to automated detection of cyberbullying: A survey,” IEEE Trans. Affect. Comput., vol. 11, no. 1, pp. 3–24, Jan.–Mar. 2020. doi: 10.1109/TAFFC.2017.2761757
|
[20] |
F. Elsafoury, S. Katsigiannis, Z. Pervez, and N. Ramzan, “When the timeline meets the pipeline: A survey on automated cyberbullying detection,” IEEE Access, vol. 9, pp. 103541–103563, Jul. 2021. doi: 10.1109/ACCESS.2021.3098979
|
[21] |
K. M. Douglas, C. McGarty, A. M. Bliuc, and G. Lala, “Understanding cyberhate: Social competition and social creativity in online white supremacist groups,” Soc. Sci. Comput. Rev., vol. 23, no. 1, pp. 68–76, Feb. 2005. doi: 10.1177/0894439304271538
|
[22] |
K. M. Douglas, “Psychology, discrimination and hate groups online,” in Oxford Handbook of Internet Psychology, A. N. Joinson, K. Y. A. McKenna, T. Postmes, and U. D. Reips, Eds. Oxford, UK: Oxford University Press, 2009, pp. 155–164.
|
[23] |
A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel, “You are who you know: Inferring user profiles in online social networks,” in Proc. 3rd ACM Int. Conf. Web Search and Data Mining, New York, USA, 2010, pp. 251–260.
|
[24] |
H. Hosseinmardi, S. A. Mattson, R. I. Rafiq, R. Han, Q. Lv, and S. Mishra, “Detection of cyberbullying incidents on the instagram social network,” arXiv preprint arXiv: 1503.03909, 2015.
|
[25] |
Q. J. Huang, V. K. Singh, and P. K. Atrey, “Cyber bullying detection using social and textual analysis,” in Proc. 3rd Int. Workshop on Socially-Aware Multimedia, Orlando, USA, 2014, pp. 3–6.
|
[26] |
A. Squicciarini, S. Rajtmajer, Y. Liu, and C. Griffin, “Identification and characterization of cyberbullying dynamics in an online social network,” in Proc. IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, Paris, France, 2015, pp. 280–285.
|
[27] |
M. A. Al-Garadi, M. R. Hussain, N. Khan, G. Murtaza, H. F. Nweke, I. Ali, G. Mujtaba, H. Chiroma, H. A. Khattak, and A. Gani, “Predicting cyberbullying on social media in the big data era using machine learning algorithms: Review of literature and open challenges,” IEEE Access, vol. 7, pp. 70701–70718, May 2019. doi: 10.1109/ACCESS.2019.2918354
|
[28] |
J. D. Wright, Int. Encyclopedia of the Social & Behavioral Sciences. 2nd ed. Amsterdam, Netherlands: Elsevier, 2015.
|
[29] |
C. Duarte, S. K. Pittman, M. M. Thorsen, R. M. Cunningham, and M. L. Ranney, “Correlation of minority status, cyberbullying, and mental health: A cross-sectional study of 1031 adolescents,” J. Child Adolesc. Trauma, vol. 11, no. 1, pp. 39–48, Mar. 2018. doi: 10.1007/s40653-018-0201-4
|
[30] |
M. Dadvar, F. M. G. de Jong, R. J. F. Ordelman, and R. B. Trieschnigg, “Improved cyberbullying detection using gender information,” in Proc. 12th Dutch-Belgian Information Retrieval Workshop, Ghent, USA, 2012, pp. 23–25.
|
[31] |
R. M. Kowalski, G. W. Giumetti, A. N. Schroeder, and M. R. Lattanner, “Bullying in the digital age: A critical review and meta-analysis of cyberbullying research among youth,” Psychol. Bull., vol. 140, no. 4, pp. 1073–1137, Jul. 2014. doi: 10.1037/a0035618
|
[32] |
V. Nahar, S. Al-Maskari, X. Li, and C. Y. Pang, “Semi-supervised learning for cyberbullying detection in social networks,” in Proc. 25th Australasian Database Conf. Databases Theory and Applications, Brisbane, Australia, 2014, pp. 160–171.
|
[33] |
M. Dadvar, R. Ordelman, F. de Jong, and D. Trieschnigg, “Towards user modelling in the combat against cyberbullying,” in Proc. 17th Int. Conf. Applications of Natural Language to Information Systems, Groningen, Netherlands, 2012, pp. 277–283.
|
[34] |
D. Chatzakou, I. Leontiadis, J. Blackburn, E. de Cristofaro, G. Stringhini, A. Vakali, and N. Kourtellis, “Detecting cyberbullying and cyberaggression in social media,” ACM Trans. Web, vol. 13, no. 3, pp. 1–51, Aug. 2019.
|
[35] |
M. McCord and M. Chuah, “Spam detection on twitter using traditional classifiers,” in Proc. 8th Int. Conf. Autonomic and Trusted Computing, Banff, Canada, 2011, pp. 175–186.
|
[36] |
T. Jr. Costa and R. R. McCrae, “Four ways five factors are basic,” Pers. Individ. Differ., vol. 13, no. 6, pp. 653–665, Jun. 1992. doi: 10.1016/0191-8869(92)90236-I
|
[37] |
O. P. John and S. Srivastava, “The big five trait taxonomy: History, measurement, and theoretical perspectives,” in Handbook of Personality: Theory and Research, L. A. Pervin and O. P. John, Eds. New York, USA: Guilford Press, 1999, pp. 102–138.
|
[38] |
L. R. Goldberg, J. A. Johnson, H. W. Eber, R. Hogan, M. C. Ashton, C. R. Cloninger, and H. G. Gough, “The international personality item pool and the future of public-domain personality measures,” J. Res. Pers., vol. 40, no. 1, pp. 84–96, Feb. 2006. doi: 10.1016/j.jrp.2005.08.007
|
[39] |
L. R. Goldberg, “A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models,” in Personality Psychology in Europe, I. Mervielde, I. Deary, F. de Fruyt, and F. Ostendorf, Eds, Tilburg, Netherlands: Tilburg University Press, 1999, pp. 7–28.
|
[40] |
D. L. Paulhus and K. M. Williams, “The dark triad of personality: Narcissism, machiavellianism, and psychopathy,” J. Res. Pers., vol. 36, no. 6, pp. 556–563, Dec. 2002. doi: 10.1016/S0092-6566(02)00505-6
|
[41] |
K. Jonason and G. D. Webster, “The dirty dozen: A concise measure of the dark triad,” Psychol. Assess., vol. 22, no. 2, pp. 420–432, Jun. 2010. doi: 10.1037/a0019265
|
[42] |
S. Jakobwitz and V. Egan, “The dark triad and normal personality traits,” Pers. Individ. Differ., vol. 40, no. 2, pp. 331–339, Jan. 2006. doi: 10.1016/j.paid.2005.07.006
|
[43] |
H. Douglas, M. Bore, and D. Munro, “Distinguishing the dark triad: Evidence from the five-factor model and the Hogan development survey,” Psychology, vol. 3, no. 3, pp. 237–242, Mar. 2012. doi: 10.4236/psych.2012.33033
|
[44] |
M. van Geel, A. Goemans, F. Toprak, and Vedder, “Which personality traits are related to traditional bullying and cyberbullying? A study with the big five, dark triad and sadism” Pers. Individ. Differ., vol. 106, pp. 231–235, Feb. 2017. doi: 10.1016/j.paid.2016.10.063
|
[45] |
R. Festl and T. Quandt, “Social relations and cyberbullying: The influence of individual and structural attributes on victimization and perpetration via the internet,” Hum. Commun. Res., vol. 39, no. 1, pp. 101–126, Jan. 2013. doi: 10.1111/j.1468-2958.2012.01442.x
|
[46] |
A. K. Goodboy and M. M. Martin, “The personality profile of a cyberbully: Examining the dark triad,” Comput. Hum. Behav., vol. 49, pp. 1–4, Aug. 2015. doi: 10.1016/j.chb.2015.02.052
|
[47] |
R. Ang, K. A. Tan, and A. T. Mansor, “Normative beliefs about aggression as a mediator of narcissistic exploitativeness and cyberbullying,” J. Interpers. Violence, vol. 26, no. 13, pp. 2619–2634, Dec. 2010.
|
[48] |
S. Pabian, C. J. S. de Backer, and H. Vandebosch, “Dark triad personality traits and adolescent cyber-aggression,” Pers. Individ. Differ., vol. 75, pp. 41–46, Mar. 2015. doi: 10.1016/j.paid.2014.11.015
|
[49] |
M. F. Yao, C. Chelmis, and D. S. Zois, “Cyberbullying ends here: Towards robust detection of cyberbullying in social media,” in Proc. World Wide Web Conf., San Francisco, USA, 2019, pp. 3427–3433.
|
[50] |
A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, “Measurement and analysis of online social networks,” in Proc. 7th ACM SIGCOMM Conf. Internet Measurement, San Diego, USA, 2007, pp. 29–42.
|
[51] |
M. Pennacchiotti and A. M. Popescu, “Democrats, republicans and starbucks afficionados: User classification in twitter,” in Proc. 17th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Diego, USA, 2011, pp. 430–438.
|
[52] |
M. de Choudhury, W. A. Mason, J. M. Hofman, and D. J. Watts, “Inferring relevant social networks from interpersonal communication,” in Proc. 19th Int. Conf. World Wide Web, Raleigh, USA, 2010, pp. 301–310.
|
[53] |
J. F. Mancilla-Caceres, D. Espelage, and E. Amir, “A computer game-based method for studying bullying and cyberbullying,” J. Sch. Violence, vol. 14, no. 1, pp. 66–86, 2015.
|
[54] |
V. Nahar, S. Unankard, X. Li, and C. Y. Pang, “Sentiment analysis for effective detection of cyber bullying,” in Proc. 14th Asia-Pacific Web Conf. Web Technologies and Applications, Kunming, China, 2012, pp. 767–774.
|
[55] |
C. Ziems, Y. Vigfusson, and F. Morstatter, “Aggressive, repetitive, intentional, visible, and imbalanced: Refining representations for cyberbullying classification,” in Proc. 14th Int. AAAI Conf. Web and Social Media, Atlanta, USA, 2020, 808–819.
|
[56] |
E. Papegnies, V. Labatut, R. Dufour, and G. Linarès, “Graph-based features for automatic online abuse detection,” in Proc. 5th Int. Conf. Statistical Language and Speech Processing, Le Mans, France, 2017, pp. 70–81.
|
[57] |
C. Chelmis, D. S. Zois, and M. F. Yao, “Mining patterns of cyberbullying on twitter,” in Proc. IEEE Int. Conf. Data Mining Workshops, New Orleans, USA, 2017, pp. 126–133.
|
[58] |
V. Bindu, S. Thilagam, and D. Ahuja, “Discovering suspicious behavior in multilayer social networks,” Comput. Hum. Behav., vol. 73, pp. 568–582, Aug. 2017. doi: 10.1016/j.chb.2017.04.001
|
[59] |
R. M. Kowalski and S. Limber, “Psychological, physical, and academic correlates of cyberbullying and traditional bullying,” J. Adolesc. Health, vol. 53, no. 1, pp. S13–20, Jul. 2013. doi: 10.1016/j.jadohealth.2012.09.018
|
[60] |
D. Soni and V. Singh, “Time reveals all wounds: Modeling temporal characteristics of cyberbullying,” in Proc. 12th Int. AAAI Conf. Web and Social Media, Stanford, USA, 2018, pp. 684–687.
|
[61] |
A. Gupta, W. X. Yang, D. Sivakumar, Y. Silva, D. Hall, and M. N. Barioni, “Temporal properties of cyberbullying on instagram,” in Proc. Companion Web Conf., Taipei, China, 2020, 576–583.
|
[62] |
J. Kleinberg, “Bursty and hierarchical structure in streams,” in Proc. Eighth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Alberta, Canada, 2002, 91–101.
|
[63] |
S. Y. Ge, L. Cheng, and H. Liu, “Improving cyberbullying detection with user interaction,” in Proc. Web Conf., Ljubljana, Slovenia, 2021, pp. 496–506.
|
[64] |
Noviantho, S. M. I. Isa, and L. Ashianti, “Cyberbullying classification using text mining,” in Proc. 1st Int. Conf. Informatics and Computational Sciences, Semarang, Indonesia, 2017, pp. 241–246.
|
[65] |
S. Nadali, M. A. A. Murad, N. M. Sharef, A. Mustapha, and S. Shojaee, “A review of cyberbullying detection: An overview,” in Proc. 13th Int. Conf. Intellient Systems Design and Applications, Salangor, Malaysia, 2013, pp. 325–330.
|
[66] |
N. Tahmasbi and E. Rastegari, “A socio-contextual approach in automated detection of public cyberbullying on twitter,” ACM Trans. Soc. Comput., vol. 1, no. 4, Dec. 2018.
|
[67] |
R. Zhao, A. N. Zhou, and K. Z. Mao, “Automatic detection of cyberbullying on social networks based on bullying features,” in ICDCN, ACM 978-1-4503-4032-8, pp. 1–6, 2016.
|
[68] |
K. Dinakar, B. Jones, C. Havasi, H. Lieberman, and R. Picard, “Common sense reasoning for detection, prevention, and mitigation of cyberbullying,” ACM Trans. Interact. Intell. Syst., vol. 2, no. 3, pp. 1–30, Sep. 2012.
|
[69] |
N. Pendar, “Toward spotting the pedophile telling victim from predator in text chats,” in Proc. Int. Conf. Semantic Computing, Irvine, USA, 2017, pp. 235–241.
|
[70] |
J. M. Xu, K. S. Jun, X. J. Zhu, and A. Bellmore, “Learning from bullying traces in social media,” in Proc. Conf. North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Montrèal, Canada, 2012, pp. 656–666.
|
[71] |
E. Cambria, D. Das, S. Bandyopadhyay, and A. Feraco, A Practical Guide to Sentiment Analysis, Cham, Germany: Springer, 2017.
|
[72] |
S. Murnion, W. J. Buchanan, A. Smales, and G. Russell, “Machine learning and semantic analysis of in-game chat for cyberbullying,” Comput. Secur., vol. 76, pp. 197–213, Jul. 2018. doi: 10.1016/j.cose.2018.02.016
|
[73] |
M. A. Al-Ajlan and M. Ykhlef, “Optimized twitter cyberbullying detection based on deep learning,” in Proc. 21st Saudi Computer Society Nat. Computer Conf., Riyadh, Saudi Arabia, 2018, pp. 1–5.
|
[74] |
J. L. Bigelow, A. Edwards, and L. Edwards, “Detecting cyberbullying using latent semantic indexing,” in Proc. 1st Int. Workshop on Computational Methods for CyberSafety, Indianapolis, USA, pp. 2016, 11–14.
|
[75] |
K. Dinakar, R. Reichart, and H. Lieberman, “Modeling the detection of textual cyberbullying,” in Proc. 14th Int. AAAI Conf. Web and Social Media, Barcelona, Spain, 2011, pp. 11–17.
|
[76] |
C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang., “Abusive language detection in online user content,” in Proc. 25th Int. Conf. World Wide Web, Montreal, Canada, 2016, pp. 145–153.
|
[77] |
D. W. Yin, Z. Z. Xue, L. J. Hong, B. D. Davison, A. Kontostathis, A. Edwards, and L. Edwards, “Detection of harassment on web 2.0,” Madrid, Spain, 2009.
|
[78] |
Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Proc. 31st Int. Conf. Machine Learning, Beijing, China, 2014, pp. 1188–1196.
|
[79] |
N. Aulia and I. Budi, “Hate speech detection on indonesian long text documents using machine learning approach,” in Proc. 5th Int. Conf. Computing and Artificial Intelligence, Bali, Indonesia, 2019, pp. 164–169.
|
[80] |
Burnap and M. L. Williams, “Cyber hate speech on Twitter: An application of machine classification and statistical modeling for policy and decision making,” Policy Internet, vol. 7, no. 2, pp. 223–242, Jun. 2015. doi: 10.1002/poi3.85
|
[81] |
M. Corazza, S. Menini, E. Cabrio, S. Tonelli, and S. Villata, “A multilingual evaluation for online hate speech detection,” ACM Trans. Internet Technol., vol. 20, no. 2, pp. 1–22, May 2020.
|
[82] |
N. Vishwamitra, H. X. Hu, F. Luo, and L. Cheng, “Towards understanding and detecting cyberbullying in real-world images,” in Proc. 28th Annu. Network and Distributed System Security Symp., 2021.
|
[83] |
F. F. Patacsil, “Analysis of cyberbullying incidence among Filipina victims: A pattern recognition using association rule extraction,” Int. J. Intell. Syst. Appl., vol. 11, no. 11, pp. 48–57, Nov. 2019.
|
[84] |
N. Potha and M. Maragoudakis, “Cyberbullying detection using time series modeling,” in Proc. IEEE Int. Conf. Data Mining Workshop, Shenzhen, China, 2014, pp. 373–382.
|
[85] |
Z. Q. Zhang, D. Robinson, and J. Tepper, “Detecting hate speech on twitter using a convolution-GRU based deep neural network,” in Proc. 15th Int. Conf. the Semantic Web, Heraklion, Greece, 2018, pp. 745–760.
|
[86] |
S. O. Sood, E. F. Churchill, and J. Antin, “Automatic identification of personal insults on social news sites,” J. Am. Soc. Inf. Sci. Technol., vol. 63, no. 2, pp. 270–285, Feb. 2012. doi: 10.1002/asi.21690
|
[87] |
K. Wang, Y. Cui, J. W. Hu, Y. Zhang, W. Zhao, and L. M. Feng, “Cyberbullying detection, based on the fasttext and word similarity schemes,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 20, no. 1, pp. 1–15, Jan. 2021.
|
[88] |
M. Dadvar and F. de Jong, “Cyberbullying detection: A step toward a safer internet yard,” in Proc. 21st Int. Conf. World Wide Web, Lyon, France, 2012.
|
[89] |
K. Burn-Thornton and T. Burman, “The use of data mining to indicate virtual (email) bullying,” in Proc. 3rd Global Congr. Intelligent Systems, Wuhan, China, 2012, pp. 253–256.
|
[90] |
S. O. Sood, J. Antin, and E. Churchill, “Using crowdsourcing to improve profanity detection,” in Proc. AAAI Spring Symp. Series, Palo Alto, USA, 2012.
|
[91] |
U. Bretschneider, T. Wöhner, and R. Peters, “Detecting online harassment in social networks,” in Proc. 35th Int. Conf. Information Systems, Auckland, New Zealand, 2014, pp. 1–14.
|
[92] |
E. Rudkowsky, M. Haselmayer, M. Wastian, M. Jenny, Š Emrich, and M. Sedlmair, “More than bags of words: Sentiment analysis with word embeddings,” Commun. Methods Meas., vol. 12, no. 2–3, pp. 140–157, Mar. 2018. doi: 10.1080/19312458.2018.1455817
|
[93] |
M. Dadvar, D. Trieschnigg, R. Ordelman, and F. de Jong, “Improving cyberbullying detection with user context,” in Proc. 35th European Conf. Information Retrieval, Moscow, Russia, 2013, pp. 693–696.
|
[94] |
M. Fortunatus, Anthony, and S. Charters, “Combining textual features to detect cyberbullying in social media posts,” Procedia Comput. Sci., vol. 176, pp. 612–621, Jan. 2020. doi: 10.1016/j.procs.2020.08.063
|
[95] |
M. Dadvar, D. Trieschnigg, and F. de Jong, “Experts and machines against bullies: A hybrid approach to detect cyberbullies,” in Proc. Canadian Conf. Artificial Intelligence, Montrèal, Canada, 2014, pp. 275–281.
|
[96] |
H. Watanabe, M. Bouazizi, and T. Ohtsuki, “Hate speech on twitter: A pragmatic approach to collect hateful and offensive expressions and perform hate speech detection,” IEEE Access, vol. 6, pp. 13825–13835, Feb. 2018. doi: 10.1109/ACCESS.2018.2806394
|
[97] |
L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters, R. Rousseau, and A. Vanhoutte, “Similarity measures in scientometric research: The jaccard index versus Salton’s cosine formula,” Inf. Process. Manag., vol. 25, no. 3, pp. 315–318, May 1989. doi: 10.1016/0306-4573(89)90048-4
|
[98] |
P. Blandfort, D. U. Patton, W. R. Frey, S. Karaman, S. Bhargava, F. T. Lee, S. Varia, C. Kedzie, M. B. Gaskell, R. Schifanella, K. McKeown, and S. F. Chang, “Multimodal social media analysis for gang violence prevention,” in Proc. 13th Int. AAAI Conf. Web and Social Media, Munich, Germany, 2019, pp. 114–124.
|
[99] |
H. Hosseinmardi, R. I. Rafiq, R. Han, Q. Lv, and S. Mishra, “Prediction of cyberbullying incidents in a media-based social network,” in Proc. IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, San Francisco, USA, 2016, pp. 186–192.
|
[100] |
V. K. Singh, S. Ghosh, and C. Jose, “Toward multimodal cyberbullying detection,” in Proc. CHI Conf. Extended Abstracts on Human Factors in Computing Systems, Denver, USA, 2019, pp. 2090–2099.
|
[101] |
H. T. Zhong, H. Li, A. C. Squicciarini, S. M. Rajtmajer, C. Griffin, D. J. Miller, and C. Caragea, “Content-driven detection of cyberbullying on the instagram social network,” in Proc. 25th Int. Joint Conf. Artificial Intelligence, New York, USA, 2016, pp. 3952–3958.
|
[102] |
R. Gomez, J. Gibert, L. Gomez, and D. Karatzas, “Exploring hate speech detection in multimodal publications,” in Proc. IEEE Winter Conf. Applications of Computer Vision, Snowmass, USA, 2020, 1459–1467.
|
[103] |
K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption generation with visual attention,” in Proc. 32nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 2048–2057.
|
[104] |
M. Khan, M. A. Tahir, and Z. Ahmed, “Detection of violent content in cartoon videos using multimedia content detection techniques,” in Proc. IEEE 21st Int. Multi-Topic Conf., Karachi, Pakistan, 2018, pp. 1–5.
|
[105] |
S. Zerr, S. Siersdorfer, J. Hare, and E. Demidova., “Privacy-aware image classification and search,” in Proc. 35th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Portland, USA, 2012, pp. 35–44.
|
[106] |
Y. Miyakoshi and S. Kato, “Facial emotion detection considering partial occlusion of face using Bayesian network,” in Proc. IEEE Symp. Computers & Informatics, Kuala Lumpur, Malaysia, 2011, pp. 96–101.
|
[107] |
A. Das, J. S. Wahi, and S. Y. Li, “Detecting hate speech in multi-modal memes,” arXiv preprint arXiv: 2012.14891, 2020.
|
[108] |
J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proc. Conf. North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, 2018, pp. 4171–4186.
|
[109] |
F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image categorization,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, USA, 2017, pp. 1–8.
|
[110] |
D. K. Zhang, J. Yin, X. Q. Zhu, and C. Q. Zhang, “Network representation learning: A survey,” IEEE Trans. Big Data, vol. 6, no. 1, pp. 3–28, Mar. 2020. doi: 10.1109/TBDATA.2018.2850013
|
[111] |
N. Tahmasbi and A. Fuchsberger, “Challenges and future directions of automated cyberbullying detection,” in Proc. 24th Americas Conf. Information Systems, New Orleans, USA, 2018.
|
[112] |
Fortuna and S. Nunes, “A survey on automatic detection of hate speech in text,” ACM Comput. Surv., vol. 51, no. 4, pp. 1–30, Jul. 2018.
|
[113] |
A. Q. Wang and K. Potika, “Cyberbullying classification based on social network analysis,” in Proc. IEEE 7th Int. Conf. Big Data Computing Service and Applications, Oxford, United Kingdom, 2021, pp. 87–95.
|
[114] |
V. K. Singh, Q. J. Huang, and P. K. Atrey, “Cyberbullying detection using probabilistic socio-textual information fusion,” in Proc. IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, San Francisco, USA, 2016, pp. 884–887.
|
[115] |
T. G. Dietterich, “Ensemble methods in machine learning,” in Proc. 1st Int. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000, pp. 1–15.
|
[116] |
M. F. López-Vizcaíno, F. J. Nóvoa, V. Carneiro, and F. Cacheda, “Early detection of cyberbullying on social media networks,” Future Gener. Comput. Syst., vol. 118, pp. 219–229, May 2021. doi: 10.1016/j.future.2021.01.006
|
[117] |
F. Cacheda, D. Fernandez, F. J. Novoa, and V. Carneiro, “Early detection of depression: Social network analysis and random forest techniques,” J. Med. Internet Res., vol. 21, no. 6, p. e12554, Jun. 2019.
|
[118] |
Z. H. Zhou, “A brief introduction to weakly supervised learning,” Natl. Sci. Rev., vol. 5, no. 1, pp. 44–53, Jan. 2018. doi: 10.1093/nsr/nwx106
|
[119] |
E. Raisi and B. Huang, “Cyberbullying detection with weakly supervised machine learning,” in Proc. IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, Sydney, Australia, 2017, pp. 409–416.
|
[120] |
E. Raisi and B. Huang., “Co-trained ensemble models for weakly supervised cyberbullying detection,” in Proc. 31st Conf. Neural Information Processing Systems, Long Beach, USA, 2017.
|
[121] |
T. Kohonen, “Self-organizing maps: Ophmization approaches,” in Artificial Neural Networks, T. Kohonen, K. Mäkisara, O. Simula, and J. KANGAS, Eds. Amsterdam: Elsevier, 1991, pp. 981–990.
|
[122] |
M. Di Capua, E. Di Nardo, and A. Petrosino, “Unsupervised cyber bullying detection in social networks,” in Proc. 23rd Int. Conf. Pattern Recognition, Cancun, Mexico, 2016, pp. 432–437.
|
[123] |
A. Rauber, D. Merkl, and M. Dittenbach, “The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data,” IEEE Trans. Neural Netw., vol. 13, no. 6, pp. 1331–1341, Nov. 2002. doi: 10.1109/TNN.2002.804221
|
[124] |
S. Das, A. Kim, and S. Karmakar, “Change-point analysis of cyberbullying-related twitter discussions during COVID-19,” in Proc. 16th Annu. Social Informatics Research Symp., 2020.
|
[125] |
H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE Trans. Acoust. Speech Signal Process., vol. 26, no. 1, pp. 43–49, Feb. 1978. doi: 10.1109/TASSP.1978.1163055
|
[126] |
E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proc. SIAM Int. Conf. Data Mining, Chicago, USA, 2001.
|
[127] |
L. Cheng, R. C. Guo, Y. N. Silva, D. Hall, and H. Liu, “Modeling temporal patterns of cyberbullying detection with hierarchical attention networks,” ACM/IMS Trans. Data Sci., vol. 2, no. 2, pp. 1–23, May 2021.
|
[128] |
L. Cheng, R. C. Guo, Y. Silva, D. Hall, and H. Liu, “Hierarchical attention networks for cyberbullying detection on the instagram social network,” in Proc. SIAM Int. Conf. Data Mining, Calgary, Canada, 2019, pp. 235–243.
|
[129] |
D. Soni and V. Singh, “Time reveals all wounds: Modeling temporal characteristics of cyberbullying,” in Proc. 12th Int. AAAI Conf. Web and Social Media, Stanford, USA, 2018.
|
[130] |
S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010. doi: 10.1109/TKDE.2009.191
|
[131] |
M. A. Rizoiu, T. Y. Wang, G. Ferraro, and H. Suominen, “Transfer learning for hate speech detection in social media,” arXiv preprint arXiv: 1906.03829, 2019.
|
[132] |
S. Agrawal and A. Awekar, “Deep learning for detecting cyberbullying across multiple social media platforms,” in Proc. 40th European Conf. Information Retrieval, Grenoble, France, 2018, pp. 141–153.
|
[133] |
J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,” in Proc. Conf. Empirical Methods in Natural Language Processing, Doha, Qatar, 2014, pp. 1532–1543.
|
[134] |
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural Language processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12, pp. 2493–2537, 2011.
|
[135] |
D. Y. Tang, F. R. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning sentiment-specific word embedding for twitter sentiment classification,” in Proc. 52nd Annu. Meeting of the Association for Computational Linguistics, Baltimore, Maryland, 2014, pp. 1555–1565.
|
[136] |
T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv: 1611.07308, 2016.
|
[137] |
A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, USA, 2016, pp. 855–864.
|
[138] |
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv: 1409.1556, 2014.
|
[139] |
K. Kumari and J. P. Singh, “Identification of cyberbullying on multi-modal social media posts using genetic algorithm,” Trans. Emerging Telecommun. Technol., vol. 32, no. 2, p. e3907, Feb. 2021.
|