A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 7
Jul.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. Bi, H. T. Yuan, J. H. Zhai, M. C. Zhou, and H. V. Poor, “Self-adaptive bat algorithm with genetic operations,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1284–1294, Jul. 2022. doi: 10.1109/JAS.2022.105695
Citation: J. Bi, H. T. Yuan, J. H. Zhai, M. C. Zhou, and H. V. Poor, “Self-adaptive bat algorithm with genetic operations,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1284–1294, Jul. 2022. doi: 10.1109/JAS.2022.105695

Self-adaptive Bat Algorithm With Genetic Operations

doi: 10.1109/JAS.2022.105695
Funds:  This work was supported in part by the Fundamental Research Funds for the Central Universities (YWF-22-L-1203), the National Natural Science Foundation of China (62173013, 62073005), the National Key Research and Development Program of China (2020YFB1712203), and U.S. National Science Foundation (CCF-0939370, CCF-1908308)
More Information
  • Swarm intelligence in a bat algorithm (BA) provides social learning. Genetic operations for reproducing individuals in a genetic algorithm (GA) offer global search ability in solving complex optimization problems. Their integration provides an opportunity for improved search performance. However, existing studies adopt only one genetic operation of GA, or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only. Differing from them, this work proposes an improved self-adaptive bat algorithm with genetic operations (SBAGO) where GA and BA are combined in a highly integrated way. Specifically, SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality. Guided by these exemplars, SBAGO improves both BA’s efficiency and global search capability. We evaluate this approach by using 29 widely-adopted problems from four test suites. SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems. Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness, search accuracy, local optima avoidance, and robustness.


  • loading
  • [1]
    X. S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor, Eds. Berlin, Germany: Springer, 2010, pp. 65–74.
    J. Senthilnath, S. Kulkarni, J. A. Benediktsson, and X. S. Yang, “A novel approach for multispectral satellite image classification based on the bat algorithm,” IEEE Geosci. Remote Sensing Lett., vol. 13, no. 4, pp. 599–603, Apr. 2016. doi: 10.1109/LGRS.2016.2530724
    C. K. Ng, C. H. Wu, W. H. Ip, and K. L. Yung, “A smart bat algorithm for wireless sensor network deployment in 3-D environment,” IEEE Commun. Lett., vol. 22, no. 10, pp. 2120–2123, Oct. 2018. doi: 10.1109/LCOMM.2018.2861766
    H. C. Huang, “Fusion of modified bat algorithm soft computing and dynamic model hard computing to online self-adaptive fuzzy control of autonomous mobile robots,” IEEE Trans. Ind. Inf., vol. 12, no. 3, pp. 972–979, Jun. 2016. doi: 10.1109/TII.2016.2542206
    T. Niknam, R. Azizipanah-Abarghooee, M. Zare, and B. Bahmani-Firouzi, “Reserve constrained dynamic environmental/economic dispatch: A new multiobjective self-adaptive learning bat algorithm,” IEEE Syst. J., vol. 7, no. 4, pp. 763–776, Dec. 2013. doi: 10.1109/JSYST.2012.2225732
    G. G. Chen, J. Qian, Z. Z. Zhang, and Z. Sun, “Multi-objective optimal power flow based on hybrid firefly-bat algorithm and constraints- prior object-fuzzy sorting strategy,” IEEE Access, vol. 7, pp. 139726–139745, Sept. 2019. doi: 10.1109/ACCESS.2019.2943480
    J. W. Zhang and G. G. Wang, “Image matching using a bat algorithm with mutation,” Appl. Mech. Mater., vol. 203, pp. 88–93, Oct. 2012. doi: 10.4028/www.scientific.net/AMM.203.88
    K. Khan, A. Nikov, and A. Sahai, “A fuzzy bat clustering method for ergonomic screening of office workplaces,” in Proc. 3rd Int. Conf. Software, Services & Semantic Technologies, Bourgas, Bulgaria, 2011, pp. 59–66.
    J. Xie, Y. Q. Zhou, and H. Chen, “A novel bat algorithm based on differential operator and Lévy flights trajectory,” Comput. Intell. Neurosci., vol. 2013, p. 453812, Feb. 2013.
    G. G. Wang and L. H. Guo, “A novel hybrid bat algorithm with harmony search for global numerical optimization,” J. Appl. Math., vol. 2013, p. 696491, Feb. 2013.
    T. T. Nguyen, J. S. Pan, T. K. Dao, M. Y. Kuo, and M. F. Horng, “Hybrid bat algorithm with artificial bee colony,” in Proc. 1st Euro- China Conf. Intelligent Data Analysis and Applications, Shenzhen, China, 2014, pp. 45–55.
    R. Y. M. Nakamura, L. A. M. Pereira, K. A. Costa, D. Rodrigues, J. P. Papa, and X. S. Yang, “BBA: A binary bat algorithm for feature selection,” in Proc. 25th SIBGRAPI Conf. Graphics, Patterns and Images, Ouro Preto, Brazil, 2012, pp. 291–297.
    J. H. Lin, C. W. Chou, C. H. Yang, and H. L. Tsai, “A chaotic Lévy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems,” Comput. Inf. Technol., vol. 2, no. 2, pp. 56–63, Jan. 2012.
    Z. Q. Wu and D. Q. Yu, “Application of improved bat algorithm for solar PV maximum power point tracking under partially shaded condition,” Appl. Soft Comput., vol. 62, pp. 101–109, Jan. 2018. doi: 10.1016/j.asoc.2017.10.039
    X. S. Yang, “Bat algorithm for multi-objective optimisation,” Int. J. Bio-Inspired Comput., vol. 3, no. 5, pp. 267–274, Sept. 2011. doi: 10.1504/IJBIC.2011.042259
    C. Yammani, S. Maheswarapu, and S. K. Matam, “A multi-objective shuffled bat algorithm for optimal placement and sizing of multi distributed generations with different load models,” Int. J. Electr. Power Energy Syst., vol. 79, pp. 120–131, Jul. 2016. doi: 10.1016/j.ijepes.2016.01.003
    X. F. Yue and H. B. Zhang, “Modified hybrid bat algorithm with genetic crossover operation and smart inertia weight for multilevel image segmentation,” Appl. Soft Comput., vol. 90, p. 106157, May 2020.
    E. Duman, M. Uysal, and A. F. Alkaya, “Migrating birds optimization: A new metaheuristic approach and its performance on quadratic assignment problem,” Inf. Sci., vol. 217, pp. 65–77, Dec. 2012. doi: 10.1016/j.ins.2012.06.032
    J. C. Bansal, A. Gopal, and A. K. Nagar, “Stability analysis of artificial bee colony optimization algorithm,” Swarm Evol. Comput., vol. 41, pp. 9–19, Aug. 2018. doi: 10.1016/j.swevo.2018.01.003
    N. E. Raine, T. C. Ings, A. Dornhaus, N. Saleh, and L. Chittka, “Adaptation, genetic drift, pleiotropy, and history in the evolution of bee foraging behavior,” Adv. Study Behav., vol. 41, pp. 305–354, Dec. 2006.
    S. L. Rutherford, “From genotype to phenotype: Buffering mechanisms and the storage of genetic information,” Bioessays, vol. 22, no. 12, pp. 1095–1105, Dec. 2000. doi: 10.1002/1521-1878(200012)22:12<1095::AID-BIES7>3.0.CO;2-A
    M. Nicolaus and P. Edelaar, “Comparing the consequences of natural selection, adaptive phenotypic plasticity, and matching habitat choice for phenotype-environment matching, population genetic structure, and reproductive isolation in meta-populations,” Ecol. Evol., vol. 8, no. 8, pp. 3815–3827, Apr. 2018. doi: 10.1002/ece3.3816
    J. Nuradis and F. Lemma, “Hybrid bat and genetic algorthim approach for cost effective SaaS placement in cloud environment,” in Proc. 3rd Int. Conf. IoT in Social, Mobile, Analytics and Cloud, Palladam, India, 2019, pp. 1–6.
    Z. Y. Li, L. Ma, and H. Z. Zhang, “Genetic mutation bat algorithm for 0–1 knapsack problem,” Comput. Eng. Appl., vol. 50, no. 11, pp. 49–52, Jun. 2014.
    H. Xu and B. Cheng, “Hybrid genetic bat algorithm for the single-objective flexible job shop scheduling problem,” J. Chin. Comput. Syst., vol. 39, no. 5, pp. 1010–1015, May 2018.
    U. Latif, N. Javaid, S. S. Zarin, M. Naz, A. Jamal, and A. Mateen, “Cost optimization in home energy management system using genetic algorithm, bat algorithm and hybrid bat genetic algorithm,” in Proc. IEEE 32nd Int. Conf. Advanced Information Networking and Applications, Krakow, Poland, 2018, pp. 667–677.
    S. A. A. Dizaj and F. S. Gharehchopogh, “A new approach to software cost estimation by improving genetic algorithm with bat algorithm,” J. Comput. Rob., vol. 11, no. 2, pp. 17–30, Sept. 2018.
    X. S. Yang and A. H. Gandomi, “Bat algorithm: A novel approach for global engineering optimization,” Eng. Comput., vol. 29, no. 5, pp. 464–483, Jul. 2012. doi: 10.1108/02644401211235834
    S. M. Stigler, “Darwin, Galton and the statistical enlightenment,” J. Roy. Stat. Soc. Ser. A, vol. 173, no. 3, pp. 469–482, Jul. 2010. doi: 10.1111/j.1467-985X.2010.00643.x
    R. Plomin, J. C. DeFries, and J. C. Loehlin, “Genotype-environment interaction and correlation in the analysis of human behavior,” Psychol. Bull., vol. 84, no. 2, pp. 309–322, 1977. doi: 10.1037/0033-2909.84.2.309
    P. Berthold and F. Pulido, “Heritability of migratory activity in a natural bird population,” Proc. Roy. Soc. B: Biol. Sci., vol. 257, no. 1350, pp. 311–315, Sept. 1994. doi: 10.1098/rspb.1994.0131
    K. Sterelny, “Made by each other: Organisms and their environment,” Biol. Phil., vol. 20, no. 1, pp. 21–36, Jan. 2005. doi: 10.1007/s10539-004-0759-0
    C. G. Jones, J. H. Lawton, and M. Shachak, “Positive and negative effects of organisms as physical ecosystem engineers,” Ecology, vol. 78, no. 7, pp. 1946–1957, Oct. 1997. doi: 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
    S. L. Yadav and A. Sohal, “Comparative study of different selection techniques in genetic algorithm,” Int. J. Eng.,Sci. Math., vol. 6, no. 3, pp. 174–180, Jul. 2017.
    A. A. Nagra, F. Han, Q. H. Ling, and S. Mehta, “An improved hybrid method combining gravitational search algorithm with dynamic multi swarm particle swarm optimization,” IEEE Access, vol. 7, pp. 50388–50399, Mar. 2019. doi: 10.1109/ACCESS.2019.2903137
    M. Z. Rehman, K. Z. Zamli, and A. Nasser, “An improved genetic bat algorithm for unconstrained global optimization problems,” in Proc. 9th Int. Conf. Software and Computer Applications, Langkawi, Malaysia, 2020, pp. 94–98.
    S. Mirjalili and A. Lewis, “S-shaped versus V-shaped transfer functions for binary particle swarm optimization,” Swarm Evol. Comput., vol. 9, pp. 1–14, Apr. 2013. doi: 10.1016/j.swevo.2012.09.002
    J. Bi, H. T. Yuan, S. Duanmu, M. C. Zhou, and A. Abusorrah, “Energy-optimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization,” IEEE Internet Things J., vol. 8, no. 5, pp. 3774–3785, Mar. 2021. doi: 10.1109/JIOT.2020.3024223
    C. Muro, R. Escobedo, L. Spector, and R. P. Coppinger, “Wolf-Pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations,” Behav. Process., vol. 88, no. 3, pp. 192–197, Nov. 2011. doi: 10.1016/j.beproc.2011.09.006
    W. J. Yu, M. E. Shen, W. N. Chen, Z. H. Zhan, Y. J. Gong, Y. Lin, O. Liu, and J. Zhang, “Differential evolution with two-level parameter adaptation,” IEEE Trans. Cybern., vol. 44, no. 7, pp. 1080–1099, Jul. 2014. doi: 10.1109/TCYB.2013.2279211
    H. Gao and W. B. Xu, “A new particle swarm algorithm and its globally convergent modifications,” IEEE Trans. Syst.,Man,Cybern.,Part B (Cybern.), vol. 41, no. 5, pp. 1334–1351, Oct. 2011. doi: 10.1109/TSMCB.2011.2144582
    S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014. doi: 10.1016/j.advengsoft.2013.12.007
    J. Wang, M. C. Zhou, X. W. Guo, and L. Qi, “Multiperiod asset allocation considering dynamic loss aversion behavior of investors,” IEEE Trans. Comput. Soc. Syst., vol. 6, no. 1, pp. 73–81, Feb. 2019. doi: 10.1109/TCSS.2018.2883764
    A. Chakri, H. Ragueb, and X. S. Yang, “Bat algorithm and directional bat algorithm with case studies,” in Nature-Inspired Algorithms and Applied Optimization, X. S. Yang, Ed. Cham, Germany: Springer, 2018, pp. 189–216.
    V. F. Yu, A. A. N. P. Redi, Y. A. Hidayat, and O. J. Wibowo, “A simulated annealing heuristic for the hybrid vehicle routing problem,” Appl. Soft Comput., vol. 53, pp. 119–132, Apr. 2017. doi: 10.1016/j.asoc.2016.12.027
    H. T. Yuan, M. C. Zhou, Q. Liu, and A. Abusorrah, “Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1380–1393, Sept. 2020.
    H. T. Yuan, J. Bi, W. Tan, M. C. Zhou, B. H. Li, and J. Q. Li, “TTSA: An effective scheduling approach for delay bounded tasks in hybrid clouds,” IEEE Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov. 2017. doi: 10.1109/TCYB.2016.2574766
    D. S. Wang, D. P. Tan, and L. Liu, “Particle swarm optimization algorithm: An overview,” Soft Comput., vol. 22, no. 2, pp. 387–408, Jan. 2018. doi: 10.1007/s00500-016-2474-6
    Y. L. Cao, H. Zhang, W. F. Li, M. Zhou, Y. Zhang, and W. A. Chaovalitwongse, “Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions,” IEEE Trans. Evol. Comput., vol. 23, no. 4, pp. 718–731, Aug. 2019. doi: 10.1109/TEVC.2018.2885075
    S. Swain and P. K. Ray, “Autonomous group particle swarm optimisation tuned dynamic voltage restorers for improved fault-ride-through capability of DFIGs in wind energy conversion system,” IET Energy Systems Integration, vol. 2, no. 4, pp. 305–315, Dec. 2020. doi: 10.1049/iet-esi.2020.0004
    G. H. Wu, R. Mallipeddi, and P. N. Suganthan, “Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization,” Nanyang Technological University, Singapore, Sept. 2017.
    J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test functions for numerical global optimization,” in Proc. IEEE Swarm Intelligence Symp., Pasadena, USA, 2005, pp. 68–75.
    F. van den Bergh and A. P. Engelbrecht, “A study of particle swarm optimization particle trajectories,” Inf. Sci., vol. 176, no. 8, pp. 937–971, Apr. 2006. doi: 10.1016/j.ins.2005.02.003
    Y. C. Hua, Q. Q. Liu, K. R. Hao, and Y. C. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021. doi: 10.1109/JAS.2021.1003817
    M. J. Cui, L. Li, M. C. Zhou, and A. Abusorrah, “Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve high-dimensional expensive problems,” IEEE Trans. Evol. Comput.. DOI: 10.1109/TEVC.2021.3113923, Sept. 2021.
    H. T. Yuan and M. C. Zhou, “Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1277–1287, Jul. 2020. doi: 10.1109/TASE.2020.3000946
    K. Bekiroglu, S. Srinivasan, E. Png, R. Su, and C. Lagoa, “Recursive approximation of complex behaviours with IoT-data imperfections,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 656–667, May 2020. doi: 10.1109/JAS.2020.1003126
    A. K. Bhandari, A. Ghosh, and I. V. Kumar, “A local contrast fusion based 3D otsu algorithm for multilevel image segmentation,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 200–213, Jan. 2020. doi: 10.1109/JAS.2019.1911843
    S. Pare, A. Kumar, V. Bajaj, and G. K. Singh, “A context sensitive multilevel thresholding using swarm based algorithms,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1471–1486, Nov. 2019.
  • JAS-2021-0679-supp.pdf


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (442) PDF downloads(63) Cited by()


    • This work designs a novel self-adaptive bat algorithm with genetic operations (SBAGO)
    • SBAGO performs genetic operations on BA solutions to produce high-quality exemplars
    • Guided by exemplars, SBAGO improves both BA’s efficiency and global search capability
    • It is evaluated with 29 common problems, and a real-life problem in edge computing
    • SBAGO outperforms recent peers in terms of search accuracy and robustness


    DownLoad:  Full-Size Img  PowerPoint