A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 9
Sep.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. Wang, Z. X. Wu, H. J. Dong, M. Tan, and J. Z. Yu, “Development and control of underwater gliding robots: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1543–1560, Sept. 2022. doi: 10.1109/JAS.2022.105671
Citation: J. Wang, Z. X. Wu, H. J. Dong, M. Tan, and J. Z. Yu, “Development and control of underwater gliding robots: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1543–1560, Sept. 2022. doi: 10.1109/JAS.2022.105671

Development and Control of Underwater Gliding Robots: A Review

doi: 10.1109/JAS.2022.105671
Funds:  This work was supported in part by the National Natural Science Foundation of China (61725305, 62033013, U1909206, T2121002)
More Information
  • As one of the most effective vehicles for ocean development and exploration, underwater gliding robots (UGRs) have the unique characteristics of low energy consumption and strong endurance. Moreover, by borrowing the motion principles of current underwater robots, a variety of novel UGRs have emerged with improving their maneuverability, concealment, and environmental friendliness, which significantly broadens the ocean applications. In this paper, we provide a comprehensive review of underwater gliding robots, including prototype design and their key technologies. From the perspective of motion characteristics, we categorize the underwater gliding robots in terms of traditional underwater gliders (UGs), hybrid-driven UGs, bio-inspired UGs, thermal UGs, and others. Correspondingly, their buoyancy driven system, dynamic and energy model, and motion control are concluded with detailed analysis. Finally, we have discussed the current critical issues and future development. This review offers valuable insight into the development of next-generation underwater robots well-suited for various oceanic applications, and aims to gain more attention of researchers and engineers to this growing field.

     

  • loading
  • [1]
    U. K. Verfuss, A. S. Aniceto, D. V. Harris, D. Gillespie, S. Fielding, G. Jiménez, P. Johnston, R. R. Sinclair, A. Sivertsen, S. A. Solbø, R. Storvold, M. Biuw, and R. Wyatt, “A review of unmanned vehicles for the detection and monitoring of marine fauna,” Mar. Pollut. Bull., vol. 140, pp. 17–29, Mar. 2019. doi: 10.1016/j.marpolbul.2019.01.009
    [2]
    H. Stommel, “The Slocum mission,” Oceanography, vol. 2, no. 1, pp. 22–25, Apr. 1989. doi: 10.5670/oceanog.1989.26
    [3]
    R. E. Davis, L. A. Regier, J. Dufour, and D. C. Webb, “The autonomous Lagrangian circulation explorer (ALACE),” J. Atmos. Ocean. Technol., vol. 9, no. 3, pp. 264–285, Jun. 1992. doi: 10.1175/1520-0426(1992)009<0264:TALCE>2.0.CO;2
    [4]
    K. Kawaguchi, T. Ura, Y. Tomoda, and H. Kobayashi, “Development and sea trials of a shuttle type AUV “ALBAC”,” in Proc. 8th Int. Symp. Unmanned Untethered Submersible Technology, Durham, UK, 1993, pp. 7–13.
    [5]
    C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, “Seaglider: A long-range autonomous underwater vehicle for oceanographic research,” IEEE J. Oceanic Eng., vol. 26, no. 4, pp. 424–436, Oct. 2001. doi: 10.1109/48.972073
    [6]
    H. Klinck, D. K. Mellinger, K. Klinck, N. M. Bogue, J. C. Luby, W. A. Jump, G. B. Shilling, T. Litchendorf, A. S. Wood, G. S. Schorr, and R. W. Baird, “Near-real-time acoustic monitoring of beaked whales and other cetaceans using a SeagliderTM,” PLoS One, vol. 7, no. 5, p. e36128, May 2012.
    [7]
    J. Sherman, R. E. Davis, W. B. Owens, and J. Valdes, “The autonomous underwater glider “Spray”,” IEEE J. Oceanic Eng., vol. 26, no. 4, pp. 437–446, Oct. 2001. doi: 10.1109/48.972076
    [8]
    G. H. Wang, Y. N. Yang, and S. X. Wang, “Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review,” Appl. Energy, vol. 278, p. 115752, Nov. 2020.
    [9]
    D. C. Webb, P. J. Simonetti, and C. P. Jones, “SLOCUM: An underwater glider propelled by environmental energy,” IEEE J. Oceanic Eng., vol. 26, no. 4, pp. 447–452, Oct. 2001. doi: 10.1109/48.972077
    [10]
    F. Liu, “System design and motion behaviors analysis of the hybrid underwater glider,” Ph.D. dissertation, Tianjin Univ., Tianjin, China, 2014.
    [11]
    X. B. Tan, “Autonomous robotic fish as mobile sensor platforms: Challenges and potential solutions,” Mar. Technol. Soc. J., vol. 45, no. 4, pp. 31–40, Jul.–Aug. 2011. doi: 10.4031/MTSJ.45.4.2
    [12]
    H. Zhou, T. L. Wang, L. Sun, and X. Jin, “Disc-type underwater glider modeling and analysis for omnidirectional and steering motion characteristics,” Int. J. Control Autom. Syst., vol. 19, no. 1, pp. 532–547, Jan. 2021. doi: 10.1007/s12555-019-0432-7
    [13]
    R. E. Davis, C. C. Eriksen, and C. P. Jones, “Autonomous buoyancy-driven underwater gliders,” in Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths, Ed. New York, USA: Taylor and Francis, 2002, pp. 37–58.
    [14]
    D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, “Underwater gliders for ocean research,” Mar. Technol. Soc. J., vol. 38, no. 2, pp. 73–84, Jun. 2004. doi: 10.4031/002533204787522703
    [15]
    M. Y. Javaid, M. Ovinis, T. Nagarajan, and F. B. Hashim, “Underwater gliders: A review,” in Proc. 4th Int. Conf. Production, Energy and Reliability, 2014, p. 02020.
    [16]
    B. Ullah, M. Ovinis, M. B. Baharom, M. Y. Javaid, and S. S. Izhar, “Underwater gliders control strategies: A review,” in Proc. 10th Asian Control Conf., Kota Kinabalu, Malaysia, 2015, pp. 1–6.
    [17]
    X. R. Shen, Y. H. Wang, S. Q. Yang, Y. Liang, and H. Z. Li, “Development of underwater gliders: An overview and prospect,” J. Unmanned Undersea Syst., vol. 26, no. 2, pp. 89–106, Apr. 2018.
    [18]
    T. J. Osse and C. C. Eriksen, “The Deepglider: A full ocean depth glider for oceanographic research,” in Proc. OCEANS, Vancouver, Canada, 2007, pp. 1–12.
    [19]
    D. L. Rudnick, R. E. Davis, and J. T. Sherman, “Spray underwater glider operation,” J. Atmos. Oceanic Technol., vol. 33, no. 6, pp. 1113–1122, Jun. 2016. doi: 10.1175/JTECH-D-15-0252.1
    [20]
    O. Schofield, J. Kohut, D. Aragon, L. Creed, J. Graver, C. Haldeman, J. Kerfoot, H. Roarty, C. Jones, D. Webb, and S. Glenn, “Slocum gliders: Robust and ready,” J. Field Rob., vol. 24, no. 6, pp. 473–485, Jun. 2007. doi: 10.1002/rob.20200
    [21]
    C. Jones, B. Allsup, and C. DeCollibus, “Slocum glider: Expanding our understanding of the oceans,” in Proc. OCEANS, St. John’s, Canada, 2014, pp. 1–10.
    [22]
    P. Pla and R. Tricarico, “Towards a low cost observing system based on low logistic SeaExplorer glider,” in Proc. IEEE Underwater Technology, Chennai, India, 2015, pp. 1–3.
    [23]
    H. Claustre, L. Beguery, and P. Pla, “SeaExplorer glider breaks two world records multisensor UUV achieves global milestones for endurance, distance,” Sea Technol., vol. 55, no. 3, pp. 19–21, Mar. 2014.
    [24]
    O. De Fommervault, F. Besson, L. Beguery, Y. Le Page, and P. Lattes, “SeaExplorer underwater glider: A new tool to measure depth-resolved water currents profiles,” in Proc. OCEANS, Marseille, France, 2019, pp. 1–6.
    [25]
    N. E. Leonard and J. G. Graver, “Model-based feedback control of autonomous underwater gliders,” IEEE J. Oceanic Eng., vol. 26, no. 4, pp. 633–645, Oct. 2001. doi: 10.1109/48.972106
    [26]
    S. Yamaguchi, T. Naito, T. Kugimiya, K. Akahoshi, and M. Fujimoto, “Development of a motion control system for underwater gliding vehicle,” in Proc. Int. Offshore and Polar Engineering Conf., Lisbon, Portugal, 2007, pp. 1115–1120.
    [27]
    N. Ichihashi, T. Ikebuchi, and M. Arima, “Development of an underwater glider with independently controllable main wings,” in Proc. Int. Offshore and Polar Engineering Conf., Vancouver, Canada, 2008, pp. 156–161.
    [28]
    J. C. Yu, Q. F. Zhang, L. H. Wu, and A. Q. Zhang, “Movement mechanism design and motion performance analysis of an underwater glider,” Robot, vol. 27, no. 5, pp. 390–395, Sept. 2005.
    [29]
    J. C. Yu, A. Q. Zhang, W. M. Jin, Q. Chen, Y. Tian, and C. J. Liu, “Development and experiments of the Sea-Wing underwater glider,” China Ocean Eng., vol. 25, no. 4, pp. 721–736, Dec. 2011. doi: 10.1007/s13344-011-0058-x
    [30]
    J. C. Yu, W. M. Jin, Z. D. Tan, Y. Huang, Y. T. Luo, and X. Wang, “Development and experiments of the Sea-Wing7000 underwater glider,” in Proc. OCEANS, Anchorage, USA, 2017, pp. 1–7.
    [31]
    C. Jones, B. Allsup, and C. Decollibus, “Slocum glider: Expanding our understanding of the oceans,” in Oceans — St. John’s, St. John’s, NL, Canada, 2014, p. 7003260.
    [32]
    Slocum G3 glider autonomous underwater vehicle long endurance, proven performance. [Online]. Available: http://obsplatforms.plocan.eu/media/data_sheets/2017/11/Teledyne_Webb_Research_Brochure_G3_2017_pages1.pdf
    [33]
    A. Caffaz, A. Caiti, G. Casalino, and A. Turetta, “The hybrid glider/AUV Folaga,” IEEE Rob. Autom. Mag., vol. 17, no. 1, pp. 31–44, Mar. 2010. doi: 10.1109/MRA.2010.935791
    [34]
    J. G. Graver, “Underwater gliders: Dynamics, control and design,” Ph.D. dissertation, Princeton Univ., Princeton, USA, 2005.
    [35]
    J. Sliwka, B. Clement, and I. Probst, “Sea glider guidance around a circle using distance measurements to a drifting acoustic source,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012, pp. 94–99.
    [36]
    Y. Huang, J. N. Qiao, J. C. Yu, Z. Y. Wang, Z. B. Xie, and K. Liu, “Sea-Whale 2000: A long-range hybrid autonomous underwater vehicle for ocean observation,” in Proc. OCEANS, Marseille, France, 2019, pp. 1–6.
    [37]
    Y. Huang, Z. Y. Wang, J. C. Yu, A. Q. Zhang, J. N. Qiao, and H. Feng, “Development and experiments of the passive buoyancy balance system for sea-whale 2000 AUV,” in Proc. OCEANS, Marseille, France, 2019, pp. 1–5.
    [38]
    Z. E. Chen, J. C. Yu, A. Q. Zhang, and F. M. Zhang, “Design and analysis of folding propulsion mechanism for hybrid-driven underwater gliders,” Ocean Eng., vol. 119, pp. 125–134, Jun. 2016. doi: 10.1016/j.oceaneng.2016.03.034
    [39]
    Z. Chen, “Research on system efficiency and motion modeling problems for hybrid-driven underwater gliders,” Ph.D. dissertation, Univ. Chin. Acad. Sci., 2016.
    [40]
    Z. E. Chen, J. C. Yu, A. Q. Zhang, R. W. Yi, and Q. F. Zhang, “Folding propeller design and analysis for a hybrid driven underwater glider,” in Proc. OCEANS, San Diego, USA, 2013, pp. 1–9.
    [41]
    W. D. Niu, S. X. Wang, Y. H. Wang, Y. Song, and Y. Q. Zhu, “Stability analysis of hybrid-driven underwater glider,” China Ocean Eng., vol. 31, no. 5, pp. 528–538, Oct. 2017. doi: 10.1007/s13344-017-0061-y
    [42]
    S. X. Wang, X. J. Sun, J. G. Wu, X. M. Wang, and H. W. Zhang, “Motion characteristic analysis of a hybrid-driven underwater glider,” in Proc. OCEANS, Sydney, Australia, 2010, pp. 1–9.
    [43]
    S. X. Wang, H. Z. Li, Y. H. Wang, Y. H. Liu, H. W. Zhang, and S. Q. Yang, “Dynamic modeling and motion analysis for a dual-buoyancy-driven full ocean depth glider,” Ocean Eng., vol. 187, p. 106163, Sept. 2019.
    [44]
    J. J. Cao, D. Lu, D. W. Li, Z. Zeng, B. H. Yao, and L. Lian, “Smartfloat: A multimodal underwater vehicle combining float and glider capabilities,” IEEE Access, vol. 7, pp. 77825–77838, Jun. 2019. doi: 10.1109/ACCESS.2019.2922171
    [45]
    J. J. Cao, D. W. Li, Z. Zeng, B. H. Yao, and L. Lian, “Drifting and gliding: Design of a multimodal underwater vehicle,” in Proc. OCEANS-MTS/IEEE Kobe Techno-Oceans, Kobe, Japan, 2018, pp. 1–7.
    [46]
    D. Lu, C. K. Xiong, Z. Zeng, and L. Lian, “A multimodal aerial underwater vehicle with extended endurance and capabilities,” in Proc. IEEE Int. Conf. Robotics and Automation, Montreal, Canada, 2019, pp. 4674–4680.
    [47]
    D. Lu, C. K. Xiong, H. X. Zhou, C. Lyu, R. Hu, C. Y. Yu, Z. Zeng, and L. Lian, “Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle,” Ocean Eng., vol. 219, p. 108324, Jan. 2021.
    [48]
    H. X. Zhou, J. J. Cao, J. Fu, C. H. Liu, Z. Y. Wei, C. Y. Yu, Z. Zeng, B. H. Yao, and L. Lian, “Dynamic modeling and motion control of a novel conceptual multimodal underwater vehicle for autonomous sampling,” Ocean Eng., vol. 240, p. 109917, Nov. 2021.
    [49]
    R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Exploration of underwater life with an acoustically controlled soft robotic fish,” Sci. Rob., vol. 3, no. 16, p. eaar3449, Mar. 2018.
    [50]
    R. Wang, S. Wang, Y. Wang, M. Tan, and J. Z. Yu, “A paradigm for path following control of a ribbon-fin propelled biomimetic underwater vehicle,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 3, pp. 482–493, Mar. 2019. doi: 10.1109/TSMC.2017.2705340
    [51]
    K. Alam, T. Ray, and S. G. Anavatti, “Design optimization of an unmanned underwater vehicle using low- and high-fidelity models,” IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 11, pp. 2794–2808, Nov. 2017. doi: 10.1109/TSMC.2015.2390592
    [52]
    J. Z. Yu, Z. S. Su, M. Wang, M. Tan, and J. W. Zhang, “Control of yaw and pitch maneuvers of a multilink dolphin robot,” IEEE Trans. Rob., vol. 28, no. 2, pp. 318–329, Apr. 2012. doi: 10.1109/TRO.2011.2171095
    [53]
    J. Z. Yu, Z. S. Su, Z. X. Wu, and M. Tan, “An integrative control method for bio-inspired dolphin leaping: Design and experiments,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3108–3116, May 2016. doi: 10.1109/TIE.2015.2511081
    [54]
    F. T. Zhang, J. Thon, C. Thon, and X. B. Tan, “Miniature underwater glider: Design and experimental results,” IEEE/ASME Trans. Mechatron., vol. 19, no. 1, pp. 394–399, Feb. 2014. doi: 10.1109/TMECH.2013.2279033
    [55]
    F. T. Zhang and X. B. Tan, “Three-dimensional spiral tracking control for gliding robotic fish,” in Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, USA, 2014, pp. 5340–5345.
    [56]
    O. Ennasr, G. Mamakoukas, T. Murphey, and X. B. Tan, “Ergodic exploration for adaptive sampling of water columns using gliding robotic fish,” in Proc. Dynamic Systems and Control Conf., Atlanta, USA, 2018, p. 51913.
    [57]
    F. T. Zhang, O. Ennasr, E. Litchman, and X. B. Tan, “Autonomous sampling of water columns using gliding robotic fish: Algorithms and harmful-algae-sampling experiments,” IEEE Syst. J., vol. 10, no. 3, pp. 1271–1281, Sept. 2016. doi: 10.1109/JSYST.2015.2458173
    [58]
    Z. X. Wu, J. Z. Yu, J. Yuan, and M. Tan, “Analysis and verification of a miniature dolphin-like underwater glider,” Ind. Rob., vol. 43, no. 6, pp. 628–635, Oct. 2016. doi: 10.1108/IR-03-2016-0095
    [59]
    J. Wang, Z. X. Wu, M. Tan, and J. Z. Yu, “Model predictive control-based depth control in gliding motion of a gliding robotic dolphin,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 9, pp. 5466–5477, Sept. 2021. doi: 10.1109/TSMC.2019.2956531
    [60]
    Z. X. Wu, J. Z. Yu, J. Yuan, M. Tan, and J. W. Zhang, “Mechatronic design and implementation of a novel gliding robotic dolphin,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Zhuhai, China, 2015, pp. 267–272.
    [61]
    Z. X. Wu, J. Z. Yu, J. Yuan, and M. Tan, “Towards a gliding robotic dolphin: Design, modeling, and experiments,” IEEE/ASME Trans. Mechatron., vol. 24, no. 1, pp. 260–270, Feb. 2019. doi: 10.1109/TMECH.2019.2891290
    [62]
    H. J. Dong, Z. X. Wu, D. Chen, M. Tan, and J. Z. Yu, “Development of a whale-shark-inspired gliding robotic fish with high maneuverability,” IEEE/ASME Trans. Mechatron., vol. 25, no. 6, pp. 2824–2834, Dec. 2020. doi: 10.1109/TMECH.2020.2994451
    [63]
    J. Wang, Z. X. Wu, Y. Q. Yang, M. Tan, and J. Z. Yu, “Spiraling motion of a gliding robotic dolphin based on the 3-D dynamic model,” in Proc. IEEE Int. Conf. Real-Time Computing and Robotics, Kandima, Maldives, 2018, pp. 13–18.
    [64]
    S. Yamaguchi, H. Mizunaga, T. Katsu, S. Nakamuta, and Y. Kono, “Preliminary design of an underwater glider for ocean floor resources exploration,” in Proc. 26th Int. Ocean and Polar Engineering Conf., Rhodes, Greece, 2016, pp. 590–594.
    [65]
    C. L. Zhou and K. H. Low, “Better endurance and load capacity: An improved design of manta ray robot (RoMan-II),” J. Bionic Eng., vol. 7, no. S4, pp. S137–S144, Dec. 2010. doi: 10.1016/S1672-6529(09)60227-4
    [66]
    K. H. Low, C. L. Zhou, G. Seet, S. S. Bi, and Y. R. Cai, “Improvement and testing of a robotic manta ray (RoMan-III),” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Karon Beach, Thailand, 2011, pp. 1730–1735.
    [67]
    Y. C. Li, D. Y. Pan, Z. Ma, and Q. S. Zhao, “Aspect ratio effect of a pair of flapping wings on the propulsion of a bionic autonomous underwater glider,” J. Bionic Eng., vol. 16, no. 1, pp. 145–153, Jan. 2019. doi: 10.1007/s42235-019-0013-8
    [68]
    Z. Y. Wang, J. C. Yu, and A. Q. Zhang, “Hydrodynamic performance analysis of a biomimetic manta ray underwater glider,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Qingdao, China, 2016, pp. 1631–1636.
    [69]
    Z. Y. Wang, J. C. Yu, A. Q. Zhang, Y. X. Wang, and W. T. Zhao, “Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider,” China Ocean Eng., vol. 31, no. 6, pp. 709–715, Dec. 2017. doi: 10.1007/s13344-017-0081-7
    [70]
    J. G. Tang, B. Li, Z. Q. Li, and J. Chang, “A novel underwater snake-like robot with gliding gait,” in Proc. 7th Int. Conf. Annu. Int. Conf. CYBER Technology in Automation, Control, and Intelligent Systems, Honolulu, USA, 2017, pp. 1113–1118.
    [71]
    J. G. Tang, B. Li, J. Chang, and A. Q. Zhang, “Unscented Kalman-filter-based sliding mode control for an underwater gliding snake-like robot,” Sci. China Inf. Sci., vol. 63, no. 1, p. 112207, Jan. 2020.
    [72]
    X. L. Zhang, B. Li, J. Chang, and J. G. Tang, “Gliding control of underwater gliding snake-like robot based on reinforcement learning,” in Proc. 8th Annu. Int. Conf. CYBER Technology in Automation, Control, and Intelligent Systems, Tianjin, China, 2018, pp. 323–328.
    [73]
    C. C. Wang, J. Lu, X. L. Ding, C. X. Jiang, J. Y. Yang, and J. H. Shen, “Design, modeling, control, and experiments for a fish-robot-based IoT platform to enable smart ocean,” IEEE Internet Things J., vol. 8, no. 11, pp. 9317–9329, Jun. 2021. doi: 10.1109/JIOT.2021.3055953
    [74]
    Y. N. Yang, “System design and performance analysis of thermal-electric hybrid power underwater glider,” Ph.D. dissertation, Tianjin Univ., Tianjin, China, 2017.
    [75]
    Y. H. Wang, S. X. Wang, and C. G. Xie, “Dynamic analysis and system design on an underwater glider propelled by temperature difference energy,” J. Tianjin Univ., vol. 40, no. 2, pp. 133–138, Feb. 2007.
    [76]
    H. W. Zhang, Y. H. Wang, and Z. G. Lian, “Application and improvement of the interlayer thermal engine powered by ocean thermal energy in an underwater glider,” in Proc. Asia-Pacific Power and Energy Engineering Conf., Wuhan, China, 2009, pp. 1–4.
    [77]
    Y. N. Yang, Y. H. Wang, Z. S. Ma, and S. X. Wang, “A thermal engine for underwater glider driven by ocean thermal energy,” Appl. Therm. Eng., vol. 99, pp. 455–464, Apr. 2016. doi: 10.1016/j.applthermaleng.2016.01.038
    [78]
    M. Nakamura, W. Koterayama, M. Inada, K. Marubayashi, T. Hyodo, H. Yoshimura, and Y. Morii, “Disk-type underwater glider for virtual mooring and field experiment,” Int. J. Offshore Polar Eng., vol. 19, no. 1, pp. 66–70, Mar. 2009.
    [79]
    H. Zhou, “Research on motion characteristics of the disc-type underwater glider,” Ph.D. dissertation, Dalian Marit. Univ., Dalian, China, 2021.
    [80]
    P. Y. Yu, T. L. Wang, H. Zhou, and C. Shen, “Dynamic modeling and three-dimensional motion simulation of a disk type underwater glider,” Int. J. Nav. Archit. Ocean Eng., vol. 10, no. 3, pp. 318–328, May 2018. doi: 10.1016/j.ijnaoe.2017.08.002
    [81]
    H. Zhou, T. L. Wang, L. Sun, and W. Lan, “Study on the vertical motion characteristics of disc-type underwater gliders with zero pitch angle,” J. Mar. Sci. Technol., vol. 25, no. 3, pp. 828–841, Sept. 2020. doi: 10.1007/s00773-019-00683-8
    [82]
    J. Q. Wang, C. Wang, Y. J. Wei, and C. Q. Zhang, “Hydrodynamic characteristics and motion simulation of flying-wing dish-shaped autonomous underwater glider,” J. Harbin Inst. Technol., vol. 50, no. 4, pp. 131–137, Apr. 2018.
    [83]
    C. Y. Sun, B. W. Song, P. Wang, and B. S. Zhang, “Energy consumption optimization of steady-state gliding for a blended-wing-body underwater glider,” in Proc. OCEANS MTS/IEEE Monterey, Monterey, USA, 2016, pp. 1–5.
    [84]
    X. X. Du and L. Y. Zhang, “Analysis on energy consumption of blended-wing-body underwater glider,” Int. J. Adv. Rob. Syst., vol. 17, no. 2, pp. 1–9, Mar.−Apr. 2020.
    [85]
    D. Lyu, B. W. Song, G. Pan, Z. M. Yuan, and J. Li, “Winglet effect on hydrodynamic performance and trajectory of a blended-wing-body underwater glider,” Ocean Eng., vol. 188, p. 106303, Sept. 2019.
    [86]
    C. Y. Sun, B. W. Song, P. Wang, and X. J. Wang, “Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target,” Int. J. Nav. Archit. Ocean Eng., vol. 9, no. 6, pp. 693–704, Nov. 2017. doi: 10.1016/j.ijnaoe.2016.12.003
    [87]
    D. Galushko, V. A. Salmina, S. A. Gafurov, and D. M. Stadnik, “Approach of flow control around unmanned underwater robot,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 452–457, Jan. 2018. doi: 10.1016/j.ifacol.2018.11.319
    [88]
    M. Arima, H. Tonai, and K. Yoshida, “Development of an ocean-going solar-powered underwater glider,” in Proc. Int. Ocean and Polar Engineering Conf., Busan, South Korea, 2014, pp. 444–448.
    [89]
    A. J. Sørensen and Ø. N. Smogeli, “Torque and power control of electrically driven marine propellers,” Control Eng. Pract., vol. 17, no. 9, pp. 1053–1064, Sept. 2009. doi: 10.1016/j.conengprac.2009.04.006
    [90]
    J. Yuan, Z. X. Wu, J. Z. Yu, and M. Tan, “Sliding mode observer-based heading control for a gliding robotic dolphin,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6815–6824, Aug. 2017. doi: 10.1109/TIE.2017.2674606
    [91]
    F. T. Zhang, F. M. Zhang, and X. B. Tan, “Tail-enabled spiraling maneuver for gliding robotic fish,” J. Dyn. Syst. Meas. Control, vol. 136, no. 4, p. 041028, Jul. 2014.
    [92]
    Y. Song, Y. H. Wang, S. Q. Yang, S. X. Wang, and M. Yang, “Sensitivity analysis and parameter optimization of energy consumption for underwater gliders,” Energy, vol. 191, p. 116506, Jan. 2020.
    [93]
    Y. Song, H. J. Ye, Y. H. Wang, W. D. Niu, X. Wan, and W. Ma, “Energy consumption modeling for underwater gliders considering ocean currents and seawater density variation,” J. Mar. Sci. Eng., vol. 9, no. 11, p. 1164, Oct. 2021.
    [94]
    H. Yang and J. Ma, “Nonlinear control for autonomous underwater glider motion based on inverse system method,” J. Shanghai Jiaotong Univ. (Sci.), vol. 15, no. 6, pp. 713–718, Nov. 2010. doi: 10.1007/s12204-010-1074-3
    [95]
    K. Isa and M. P. Arshad, “Buoyancy-driven underwater glider modelling and analysis of motion control,” Indian J. Mar. Sci., vol. 41, no. 6, pp. 516–526, Dec. 2012.
    [96]
    Y. Shan, Z. Yan, and J. Wang, “Model predictive control of underwater gliders based on a one-layer recurrent neural network,” in Proc. 6th Int. Conf. Advanced Computational Intelligence, Hangzhou, China, 2013, pp. 328–333.
    [97]
    K. Isa, M. R. Arshad, and S. Ishak, “A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control,” Ocean Eng., vol. 81, pp. 111–129, May 2014. doi: 10.1016/j.oceaneng.2014.02.002
    [98]
    F. T. Zhang and X. B. Tan, “Gliding robotic fish and its tail-enabled yaw motion stabilization using sliding mode control,” in Proc. Dynamic Systems and Control Conf., Palo Alto, USA, 2013, p. V002T32A006.
    [99]
    M. Noh, M. R. Arshad, and R. M. Mokhtar, “Depth and pitch control of USM underwater glider: Performance comparison PID vs. LQR,” Indian J. Mar. Sci., vol. 40, no. 2, pp. 200–206, Apr. 2011.
    [100]
    Y. H. Chen, W. S. Yan, J. Gao, and L. Du, “Modeling and vertical motion control of underwater glider,” Fire Control Command Control, vol. 37, no. 4, pp. 141–145, Apr. 2012.
    [101]
    Y. H. Liu, Z. Q. Su, X. Luan, D. L. Song, and L. Han, “Motion analysis and fuzzy-PID control algorithm designing for the pitch angle of an underwater glider,” J. Math. Comput. Sci., vol. 17, no. 1, pp. 133–147, Feb. 2017. doi: 10.22436/jmcs.017.01.12
    [102]
    Z. X. Wu, J. Z. Yu, J. Yuan, M. Tan, and S. W. Qi, “Gliding motion regulation of a robotic dolphin based on a controllable fluke,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2945–2953, Apr. 2020. doi: 10.1109/TIE.2019.2913810
    [103]
    K. Isa and M. R. Arshad, “Neural network control of buoyancy-driven autonomous underwater glider,” in Recent Advances in Robotics and Automation, G. S. Gupta, D. Bailey, S. Demidenko, and D. Carnegie, Eds. Berlin, Germany: Springer, 2013, pp. 15–35.
    [104]
    J. J. Cao, J. L. Cao, Z. Zeng, and L Lian, “Nonlinear multiple-input-multiple-output adaptive backstepping control of underwater glider systems,” Int. J. Adv. Rob. Syst., vol. 13, no. 6, pp. 1–14, Nov.−Dec. 2016.
    [105]
    D. L. Song, T. T. Guo, H. D. Wang, Z. J. Cui, and L. Q. Zhou, “Pitch angle active disturbance rejection control with model compensation for underwater glider,” in Proc. 10th Int. Conf. Intelligent Robotics and Applications, Wuhan, China, 2017, pp. 745–756.
    [106]
    Z. Q. Su, M. Zhou, F. F. Han, Y. W. Zhu, D. L. Song, and T. T. Guo, “Attitude control of underwater glider combined reinforcement learning with active disturbance rejection control,” J. Mar. Sci. Technol., vol. 24, no. 3, pp. 686–704, Sept. 2019. doi: 10.1007/s00773-018-0582-y
    [107]
    T. T. Guo, D. L. Song, K. Q. Li, C. Li, and H. Yang, “Pitch angle control with model compensation based on active disturbance rejection controller for underwater gliders,” J. Coast. Res., vol. 36, no. 2, pp. 424–433, Feb. 2020. doi: 10.2112/JCOASTRES-D-19-00050.1
    [108]
    Mahmoudian and C. Woolsey, “Underwater glider motion control,” in Proc. 47th IEEE Conf. Decision and Control, Cancun, Mexico, 2008, pp. 552–557.
    [109]
    F. T. Zhang and X. B. Tan, “Passivity-based stabilization of underwater gliders with a control surface,” J. Dyn. Syst. Meas. Control, vol. 137, no. 6, p. 061006, Jun. 2015.
    [110]
    S. Yan, R. F. Zhang, S. Q. Yang, W. D. Niu, Y. H. Zhang, and B. Y. Li, “Modelling and control optimization for underwater gliders of variable buoyancy processes in vertical plane,” China Mech. Eng., vol. 33, no. 1, pp. 109–117, Jan. 2022.
    [111]
    B. Claus and R. Bachmayer, “Energy optimal depth control for long range underwater vehicles with applications to a hybrid underwater glider,” Auton. Rob., vol. 40, no. 7, pp. 1307–1320, Feb. 2016. doi: 10.1007/s10514-016-9555-3
    [112]
    M. G. Joo and Z. H. Qu, “An autonomous underwater vehicle as an underwater glider and its depth control,” Int. J. Control Autom. Syst., vol. 13, no. 5, pp. 1212–1220, Jul. 2015. doi: 10.1007/s12555-014-0252-8
    [113]
    A. Keow and Z. Chen, “Modeling and control of artificial swimming bladder enabled by IPMC water electrolysis,” in Proc. Dynamic Systems and Control Conf., Atlanta, USA, 2018, p. V001T04A009.
    [114]
    M. Makrodimitris, I. Aliprantis, and E. Papadopoulos, “Design and implementation of a low cost, pump-based, depth control of a small robotic fish,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, USA, 2014, pp. 1127–1132.
    [115]
    S. X. Guo, T. Fukuda, and K. Asaka, “A new type of fish-like underwater microrobot,” IEEE/ASME Trans. Mechatron., vol. 8, no. 1, pp. 136–141, Mar. 2003. doi: 10.1109/TMECH.2003.809134
    [116]
    T. I. Um, Z. Chen, and H. Bart-Smith, “A novel electroactive polymer buoyancy control device for bio-inspired underwater vehicles,” in Proc. IEEE Int. Conf. Robotics and Automation, Shanghai, China, 2011, pp. 172–177.
    [117]
    N. Mahmoudian, J. Geisbert, and C. Woolsey, “Approximate analytical turning conditions for underwater gliders: Implications for motion control and path planning,” IEEE J. Oceanic Eng., vol. 35, no. 1, pp. 131–143, Jan. 2010. doi: 10.1109/JOE.2009.2039655
    [118]
    A. Caiti, V. Calabrò, S. Grammatico, A. Munafò, and S. Geluardi, “Switching control of an underwater glider with independently controllable wings,” IFAC Proc. Vol., vol. 45, no. 27, pp. 194–199, Sept. 2012. doi: 10.3182/20120919-3-IT-2046.00033
    [119]
    H. Yang and J. Ma, “Sliding mode tracking control of an autonomous underwater glider,” in Proc. Int. Conf. Computer Application and System Modeling, Taiyuan, China, 2010, pp. V4-555–V4-558.
    [120]
    I. Abraham and J. G. Yi, “Model predictive control of buoyancy propelled autonomous underwater glider,” in Proc. American Control Conf., Chicago, USA, 2015, pp. 1181–1186.
    [121]
    Y. Zhang, L. Zhang, and T. J. Zhao, “Discrete decentralized supervisory control for underwater glider,” in Proc. Int. Conf. Intelligent Systems Design and Applications, Jinan, China, 2006, pp. 103–106.
    [122]
    Y. Zhang, J. P. Tian, D. H. Su, and S. J. Wang, “Research on the hierarchical supervisory control of underwater glider,” in Proc. IEEE/RSJ Intelligent Robots and Systems, Beijing, China, 2006, pp. 5509–5513.
    [123]
    H. Chen and H. Qiao, “Motor-cortex-like recurrent neural network and multitask learning for the control of musculoskeletal systems,” IEEE Trans. Cogn. Dev. Syst., vol. 14, no. 2, pp. 424–436, Jun. 2022. doi: 10.1109/TCDS.2020.3045574
    [124]
    H. Chen and H. Qiao, “Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 6, pp. 3993–4006, Jun. 2021. doi: 10.1109/TSMC.2020.2966818
    [125]
    N. Tan, Z. H. Zhong, P. Yu, Z. Li, and F. L. Ni, “A discrete model-free scheme for fault tolerant tracking control of redundant manipulators,” IEEE Trans. Ind. Inf., Feb. 2022.
    [126]
    Z. Li and S. Li, “An L1-norm based optimization method for sparse redundancy resolution of robotic manipulators,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 2, pp. 469–473, Feb. 2022. doi: 10.1109/TCSII.2021.3088942
    [127]
    J. C. Yu, F. M. Zhang, A. Q. Zhang, W. M. Jin, and Y. Tian, “Motion parameter optimization and sensor scheduling for the sea-wing underwater glider,” IEEE J. Oceanic Eng., vol. 38, no. 2, pp. 243–254, Apr. 2013. doi: 10.1109/JOE.2012.2227551
    [128]
    D. Y. Xue, Z. L. Wu, Y. H. Wang, and S. X. Wang, “Coordinate control, motion optimization and sea experiment of a fleet of Petrel-II gliders,” Chin. J. Mech. Eng., vol. 31, no. 1, p. 17, Feb. 2018.
    [129]
    Yang, Y. H. Wang, S. X. Wang, S. Q. Yang, Y. Song, and L. H. Zhang, “Motion parameter optimization for gliding strategy analysis of underwater gliders,” Ocean Eng., vol. 191, p. 106502, Nov. 2019.
    [130]
    Y. Song, X. D. Xie, Y. H. Wang, S. Q. Yang, W. Ma, and P. Wang, “Energy consumption prediction method based on LSSVM-PSO model for autonomous underwater gliders,” Ocean Eng., vol. 230, p. 108982, Jun. 2021.
    [131]
    X. Y. Fu, L. Lei, G. Yang, and B. R. Li, “Multi-objective shape optimization of autonomous underwater glider based on fast elitist non-dominated sorting genetic algorithm,” Ocean Eng., vol. 157, pp. 339–349, Jun. 2018. doi: 10.1016/j.oceaneng.2018.03.055
    [132]
    C. S. Li, P. Wang, T. B. Li, and H. C. Dong, “Performance study of a simplified shape optimization strategy for blended-wing-body underwater gliders,” Int. J. Nav. Archit. Ocean Eng., vol. 12, pp. 455–467, Jan. 2020. doi: 10.1016/j.ijnaoe.2020.05.002
    [133]
    H. C. Dong, P. Wang, and Y. J. Zhang, “Discrete optimization design for cabin-skeleton coupling structure of blended-wing-body underwater glider,” Chin. J. Ship Res., vol. 16, no. 4, pp. 70–78, Aug. 2021.
    [134]
    Zhang, P. Wang, and B. W. Song, “Shape optimization for blended-wing-body underwater glider using improved Kriging-HDMR,” J. Unmanned Undersea Syst., vol. 27, no. 5, pp. 496–502, Oct. 2019.
    [135]
    Yang, Y. H. Wang, S. Q. Yang, L. H. Zhang, and J. J. Deng, “Shape optimization of underwater glider based on approximate model technology,” Appl. Ocean Res., vol. 110, p. 102580, May 2021.
    [136]
    A. T. Khan, S. Li, and X. W. Cao, “Human guided cooperative robotic agents in smart home using beetle antennae search,” Sci. China Inf. Sci., vol. 65, no. 2, p. 122204, Jan. 2022.
    [137]
    T. Khan, S. Li, and X. W. Cao, “Control framework for cooperative robots in smart home using bio-inspired neural network,” Measurement, vol. 167, p. 108253, Jan. 2021.
    [138]
    T. Khan, S. Li, and X. F. Zhou, “Trajectory optimization of 5-link biped robot using beetle antennae search,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 10, pp. 3276–3280, Oct. 2021. doi: 10.1109/TCSII.2021.3062639
    [139]
    Z. B. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–36, Jan. 2021. doi: 10.1109/JAS.2020.1003381
    [140]
    X. Luo, W. Qin, A. N. Dong, K. Sedraoui, and M. C. Zhou, “Efficient and high-quality recommendations via momentum-incorporated parallel stochastic gradient descent-based learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 402–411, Feb. 2021. doi: 10.1109/JAS.2020.1003396
    [141]
    X. Luo, Z. D. Wang, and M. S. Shang, “An instance-frequency-weighted regularization scheme for non-negative latent factor analysis on high-dimensional and sparse data,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 6, pp. 3522–3532, Jun. 2021. doi: 10.1109/TSMC.2019.2930525
    [142]
    C. Wall, C. Lembke, and D. A. Mann, “Shelf-scale mapping of sound production by fishes in the eastern Gulf of Mexico, using autonomous glider technology,” Mar. Ecol. Prog. Ser., vol. 449, pp. 55–64, Mar. 2012. doi: 10.3354/meps09549
    [143]
    L. K. P. Schultze, L. M. Merckelbach, and J. R. Carpenter, “Turbulence and mixing in a shallow shelf sea from underwater gliders,” J. Geophys. Res. Oceans, vol. 122, no. 11, pp. 9092–9109, Nov. 2017. doi: 10.1002/2017JC012872

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (1066) PDF downloads(265) Cited by()

    Highlights

    • This paper comprehensively summarizes the current platform research status of UGRs, including traditional UGs, hybrid-driven UGs, bio-inspired UGs, thermal UGs, and other types of underwater gliders
    • As key technologies of UGRs, we outline the research status of buoyancy driven system and control methods of UGRs, including system modeling, motion control, and gliding optimization
    • We analyze the current research bottlenecks and future development of UGRs, providing certain guidance and deployment suggestions for researchers in the future research

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return