A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
W. Chen and Q. L. Hu, “Sliding-mode-based attitude tracking control of spacecraft under reaction wheel uncertainties,” IEEE/CAA J. Autom. Sinica,. doi: 10.1109/JAS.2022.105665
Citation: W. Chen and Q. L. Hu, “Sliding-mode-based attitude tracking control of spacecraft under reaction wheel uncertainties,” IEEE/CAA J. Autom. Sinica,. doi: 10.1109/JAS.2022.105665

Sliding-Mode-Based Attitude Tracking Control of Spacecraft Under Reaction Wheel Uncertainties

doi: 10.1109/JAS.2022.105665
Funds:  This work was supported in part by the National Natural Science Foundation of China (61960206011), the Beijing Natural Science Foundation (JQ19017), the National Key Basic Research Program “Gravitational Wave Detection” Project (2021YFC2202600), and the Beijing Advanced Discipline Center for Unmanned Aircraft System
More Information
  • The attitude tracking operations of an on-orbit spacecraft with degraded performance exhibited by potential actuator uncertainties (including failures and misalignments) can be extraordinarily challenging. Thus, the control law development for the attitude tracking task of spacecraft subject to actuator (namely reaction wheel) uncertainties is addressed in this paper. More specially, the attitude dynamics model of the spacecraft is firstly established under actuator failures and misalignment (without a small angle approximation operation). Then, a new non-singular sliding manifold with fixed time convergence and anti-unwinding properties is proposed, and an adaptive sliding mode control (SMC) strategy is introduced to handle actuator uncertainties, model uncertainties and external disturbances simultaneously. Among this, an explicit misalignment angles range that could be treated herein is offered. Lyapunov-based stability analyses are employed to verify that the reaching phase of the sliding manifold is completed in finite time, and the attitude tracking errors are ensured to converge to a small region of the closest equilibrium point in fixed time once the sliding manifold enters the reaching phase. Finally, the beneficial features of the designed controller are manifested via detailed numerical simulation tests.

     

  • loading
  • [1]
    M. Cols-Margenet, H. Schaub, and S. Piggott, “Modular attitude guidance: Generating rotational reference motions for distinct mission profiles,” J. Aerosp. Inf. Syst., vol. 15, no. 6, pp. 335–352, 2018.
    [2]
    M. Karpenko, S. Bhatt, N. Bedrossian, and I. Ross, “Flight implementation of shortest-time maneuvers for imaging satellites,” J. Guid. Control Dyn., vol. 37, no. 4, pp. 1069–1079, 2014. doi: 10.2514/1.62867
    [3]
    Y. Li and F. Yang, “Robust adaptive attitude control for non-rigid spacecraft with quantized control input,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 472–481, 2020. doi: 10.1109/JAS.2020.1003000
    [4]
    T. F. He and Z. Wu, “Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1576–1587, 2021.
    [5]
    Y. Zhao, J. Wang, F. Yan, and Y. Shen, “Adaptive sliding mode faulttolerant control for type-2 fuzzy systems with distributed delays,” Inf. Sci., vol. 473, pp. 227–238, 2019. doi: 10.1016/j.ins.2018.09.002
    [6]
    Y. Gao, J. Liu, G. Sun, M. Liu, and L. Wu, “Fault deviation estimation and integral sliding mode control design for lipschitz nonlinear systems,” Syst. Control Lett., vol. 123, pp. 8–15, 2019. doi: 10.1016/j.sysconle.2018.08.006
    [7]
    X. Shao, G. Sun, W. Yao, J. Liu, and L. Wu, “Adaptive sliding mode control for quadrotor UAVs with input saturation,” IEEE/ASME Trans. Mechatronics, 2021, DOI: 10.1109/TMECH.2021.3094575.
    [8]
    J. Liu, X. Shen, A. Alcaide, Y. Yin, J. Leon, and S. V. L. Wu, “Sliding mode control of grid-connected NPC converters via high-gain observer,” IEEE Trans. Ind. Electron., 2021, DOI: 10.1109/TIE.2021.3070496.
    [9]
    X. Lin, J. Liu, F. Liu, Z. Liu, Y. Gao, and G. Sun, “Fractional-order sliding mode approach of buck converters with mismatched disturbances,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 68, no. 9, pp. 3890–3900, 2021. doi: 10.1109/TCSI.2021.3092138
    [10]
    M. Rayman and R. Mase, “Dawn’s operations in cruise from vesta to ceres,” Acta Astronaut., vol. 103, pp. 113–118, 2014. doi: 10.1016/j.actaastro.2014.06.042
    [11]
    S. Yin, B. Xiao, S. X. Ding, and D. Zhou, “A review on recent development of spacecraft attitude fault tolerant control system,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3311–3320, 2016. doi: 10.1109/TIE.2016.2530789
    [12]
    Y. Ma, B. Jiang, and G. Tao, “Adaptive actuator failure identification for microsatellites under closed-loop control,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 910–923, 2015. doi: 10.1109/TCST.2014.2348653
    [13]
    Z. He, Y. Shardt, D. Wang, B. Hou, and H. Zhou, “An incipient fault detection approach via detrending and denoising,” Control Eng. Pract., vol. 74, no. 5, pp. 1–12, 2018.
    [14]
    K. Kumar, N. Abreu, and M. Sinha, “Fault-tolerant attitude control of miniature satellites using reaction wheels,” Acta Astronaut., vol. 151, pp. 206–216, 2018. doi: 10.1016/j.actaastro.2018.05.004
    [15]
    Y. Ma, B. Jiang, G. Tao, and Y. Cheng, “Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback,” J. Frankl. Inst., vol. 351, no. 1, pp. 296–314, 2014. doi: 10.1016/j.jfranklin.2013.08.028
    [16]
    X. Shao, Q. Hu, Y. Shi, and B. Jiang, “Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 574–582, 2020. doi: 10.1109/TCST.2018.2875426
    [17]
    Y. Bai, J. Biggs, X. Wang, and N. Cui, “Attitude tracking with an adaptive sliding mode response to reaction wheel failure,” Eur. J. Control, vol. 42, pp. 67–76, 2018. doi: 10.1016/j.ejcon.2018.02.008
    [18]
    X. Huang and G. Duan, “Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance,” ISA Trans., vol. 98, pp. 161–172, 2020. doi: 10.1016/j.isatra.2019.08.041
    [19]
    L. Xing, J. Zhang, C. Liu, and X. Zhang, “Fuzzy-logic-based adaptive event-triggered sliding mode control for spacecraft attitude tracking,” Aerosp. Sci. Technol., vol. 108, p. 106394, 2021.
    [20]
    X. Yang, G. Tao, Y. Ma, and R. Qi, “Adaptive actuator failure compensation design for spacecraft attitude control,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 3, pp. 1021–1034, 2016. doi: 10.1109/TAES.2016.130802
    [21]
    Y. Ma, H. Ren, B. Jiang, and G. Tao, “Adaptive compensation for actuation sign faults of flexible spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 2, pp. 1288–1300, 2021. doi: 10.1109/TAES.2020.3040518
    [22]
    C. Zhang, M. Dai, P. Dong, H. Leung, and J. Wang, “Fault-tolerant attitude stabilization for spacecraft with low-frequency actuator updates: An integral-type event-triggered approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 729–737, 2021. doi: 10.1109/TAES.2020.3009542
    [23]
    H. Marsh, M. Karpenko, and Q. Gong, “Relationships between maneuver time and energy for reaction wheel attitude control,” J. Guid. Control Dyn., vol. 41, no. 2, pp. 335–348, 2018. doi: 10.2514/1.G002843
    [24]
    N. Zhou and Y. Xia, “Distributed fault-tolerant control design for rigid spacecraft finite-time attitude synchronization,” Int. J. Robust Nonlinear Control, vol. 16, no. 14, pp. 2994–3017, 2016.
    [25]
    K. Lu and Y. Xia, “Adaptive attitude tracking control for rigid spacecraft with finite-time convergence,” Automatica, vol. 49, no. 12, pp. 3591–3599, 2013. doi: 10.1016/j.automatica.2013.09.001
    [26]
    Q. Shen, D. Wang, S. Zhu, and K. Poh, “Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2390–2405, 2015. doi: 10.1109/TAES.2015.130725
    [27]
    A. Zou, K. Kumar, Z. Hou, and X. Liu, “Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network,” IEEE Trans. Syst. Man Cybern. B,Cybern., vol. 41, no. 4, pp. 950–963, 2011. doi: 10.1109/TSMCB.2010.2101592
    [28]
    S. Liu, Z. Geng, and J. Sun, “Finite-time attitude control: A finite-time passivity approach,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 1, pp. 102–108, 2015. doi: 10.1109/JAS.2015.7032911
    [29]
    H. Gui and G. Vukovich, “Adaptive fault-tolerant spacecraft attitude control using a novel integral terminal sliding mode,” Int. J. Robust Nonlinear Control, vol. 27, no. 16, pp. 3174–3196, 2017. doi: 10.1002/rnc.3733
    [30]
    L. Chen, Y. Yan, C. Mu, and C. Sun, “Characteristic model-based discrete-time sliding mode control for spacecraft with variable tilt of flexible structures,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 42–50, 2016. doi: 10.1109/JAS.2016.7373761
    [31]
    A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2012. doi: 10.1109/TAC.2011.2179869
    [32]
    Z. Zuo, Q.-L. Han, B. Ning, X. Ge, and X.-M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2322–2334, 2018. doi: 10.1109/TII.2018.2817248
    [33]
    B. Jiang, Q. Hu, and M. Friswell, “Fixed-time attitude control for rigid spacecraft with actuator saturation and faults,” IEEE Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1892–1898, 2016. doi: 10.1109/TCST.2016.2519838
    [34]
    J. Gao and Y. Cai, “Fixed-time control for spacecraft attitude tracking based on quaternion,” Acta Astronaut., vol. 115, pp. 303–313, 2015. doi: 10.1016/j.actaastro.2015.05.035
    [35]
    R. Kristiansen, P. Nicklasson, and J. Gravdahl, “Satellite attitude control by quaternion-based backstepping,” IEEE Trans. Control Syst. Technol., vol. 17, no. 1, pp. 227–232, 2009. doi: 10.1109/TCST.2008.924576
    [36]
    Y. Guo and S. Song, “Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix,” Chin. J. Aeronaut., vol. 27, no. 2, pp. 375–382, 2014. doi: 10.1016/j.cja.2014.02.017
    [37]
    Q. Hu and X. Shao, “Smooth finite-time fault-tolerant attitude tracking control for rigid spacecraft,” Aerosp. Sci. Technol., vol. 55, pp. 144–157, 2016. doi: 10.1016/j.ast.2016.05.019
    [38]
    D. Lee, “Fault-tolerant finite-time controller for attitude tracking of rigid spacecraft using intermediate quaternion,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 540–553, 2021. doi: 10.1109/TAES.2020.3024399
    [39]
    Q. Hu, B. Li, X. Huo, and Z. Shi, “Spacecraft attitude tracking control under actuator magnitude deviation and misalignment,” Aerosp. Sci. Technol., vol. 28, pp. 266–280, 2013. doi: 10.1016/j.ast.2012.11.007
    [40]
    F. Leve and M. Jah, “Spacecraft actuator alignment determination through null-motion excitation,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 3, pp. 2336–2342, 2014. doi: 10.1109/TAES.2013.120187
    [41]
    T. Mercker and M. Akella, “Adaptive estimation and control algorithms for certain independent control axis misalignments,” J. Guid. Control Dyn., vol. 37, no. 1, pp. 72–85, 2014. doi: 10.2514/1.61735
    [42]
    H. Gui and G. Vukovich, “Adaptive integral sliding mode control for spacecraft attitude tracking with actuator uncertainty,” J. Frankl. Inst., vol. 352, no. 12, pp. 5832–5852, 2015. doi: 10.1016/j.jfranklin.2015.10.001
    [43]
    B. Xiao, Q. Hu, D. Wang, and E. K. Poh, “Attitude tracking control of rigid spacecraft with actuator misalignment and fault,” IEEE Trans. Control Syst. Technol., vol. 21, no. 6, pp. 2360–2366, 2013. doi: 10.1109/TCST.2012.2237403
    [44]
    Q. Hu, B. Xiao, D. Wang, and E. Poh, “Attitude control of spacecraft with actuator uncertainty,” J. Guid. Control Dyn., vol. 36, no. 6, pp. 1771–1776, 2013. doi: 10.2514/1.58624
    [45]
    R. Qi, W. Su, and Y. Meng, “Fault-tolerant attitude controller design for deep space probe via adaptive fast terminal sliding mode control,” ASME. J. Dyn. Sys.,Meas.,Control., vol. 141, no. 9, p. 091006, 2019. doi: 10.1115/1.4042548
    [46]
    Z. Wang, Y. Su, and L. Zhang, “A new nonsingular terminal sliding mode control for rigid spacecraft attitude tracking,” ASME. J. Dyn. Sys., Meas., Control., vol. 140, no. 5, p. 051006, 2018.
    [47]
    H. Yoon and P. Tsiotras, “Adaptive spacecraft attitude tracking control with actuator uncertainties,” J. Astronaut. Sci., vol. 56, no. 2, pp. 251–268, 2008. doi: 10.1007/BF03256551
    [48]
    S. Murugesan and P. S. Goel, “Fault tolerant spacecraft attitude control system,” Sadhana-Acad. Proc. Eng. Sci, vol. 11, no. 1–2, pp. 233–261, 1987.
    [49]
    Q. Shen, D. Wang, S. Zhu, and E. K. Poh, “Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1131–1138, 2015. doi: 10.1109/TCST.2014.2354260
    [50]
    L. Ji, C. Qian, and M. T. Frye, “A dual-observer design for global output feedback stabilization of nonlinear systems with low-order and highorder nonlinearities,” Int. J. Robust Nonlinear Control, vol. 19, no. 15, pp. 1697–1720, 2009. doi: 10.1002/rnc.1401
    [51]
    H. Alwi, C. Edwards, O. Stroosma, and J. A. Mulder, “Fault tolerant sliding mode control design with piloted simulator evaluation,” J. Guid.,Control,Dyn., vol. 31, no. 5, pp. 1186–1201, 2008. doi: 10.2514/1.35066
    [52]
    C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications. Taylor Francis, 1998.
    [53]
    C.-C. Chen, S. S.-D. Xu, and Y.-W. Liang, “Study of nonlinear integral sliding mode fault-tolerant control,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 1160–1168, 2018.
    [54]
    H. Ahmed, H. Ríos, B. Ayalew, and Y. Wang, “Second-order slidingmode differentiators: An experimental comparative analysis using van der pol oscillator,” Int. J. Control, vol. 91, no. 9, pp. 2100–2112, 2018. doi: 10.1080/00207179.2018.1442023
    [55]
    Q. Chen, M. Tao, X. He, and L. Tao, “Adaptive nonsingular fixedtime attitude tracking control of quadrotor UAVs,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 5, pp. 2864–2877, 2021. doi: 10.1109/TAES.2021.3067610
    [56]
    L. Wang, S. Jiang, M. Ge, C. Hu, and J. Hu, “Finite-/fixed-time synchronization of memristor chaotic systems and image encryption application,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 68, no. 12, pp. 4957–4969, 2021. doi: 10.1109/TCSI.2021.3121555
    [57]
    D. C. R. Furfaro and D. R. Wibben, “Asteroid precision landing via multiple sliding surfaces guidance techniques,” J. Guid.,Control,Dyn., vol. 36, no. 4, pp. 1075–1092, 2013. doi: 10.2514/1.58246
    [58]
    L. Wang, T. Chai, and L. Zhai, “Neural-network-based terminal slidingmode control of robotic manipulators including actuator dynamics,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3296–3304, 2009. doi: 10.1109/TIE.2008.2011350

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (189) PDF downloads(44) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return