IEEE/CAA Journal of Automatica Sinica
Citation:  W. Chen and Q. L. Hu, “Slidingmodebased attitude tracking control of spacecraft under reaction wheel uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1475–1487, Jun. 2023. doi: 10.1109/JAS.2022.105665 
The attitude tracking operations of an onorbit spacecraft with degraded performance exhibited by potential actuator uncertainties (including failures and misalignments) can be extraordinarily challenging. Thus, the control law development for the attitude tracking task of spacecraft subject to actuator (namely reaction wheel) uncertainties is addressed in this paper. More specially, the attitude dynamics model of the spacecraft is firstly established under actuator failures and misalignment (without a small angle approximation operation). Then, a new nonsingular sliding manifold with fixed time convergence and antiunwinding properties is proposed, and an adaptive sliding mode control (SMC) strategy is introduced to handle actuator uncertainties, model uncertainties and external disturbances simultaneously. Among this, an explicit misalignment angles range that could be treated herein is offered. Lyapunovbased stability analyses are employed to verify that the reaching phase of the sliding manifold is completed in finite time, and the attitude tracking errors are ensured to converge to a small region of the closest equilibrium point in fixed time once the sliding manifold enters the reaching phase. Finally, the beneficial features of the designed controller are manifested via detailed numerical simulation tests.
[1] 
M. ColsMargenet, H. Schaub, and S. Piggott, “Modular attitude guidance: Generating rotational reference motions for distinct mission profiles,” J. Aerosp. Inf. Syst., vol. 15, no. 6, pp. 335–352, 2018.

[2] 
M. Karpenko, S. Bhatt, N. Bedrossian, and I. Ross, “Flight implementation of shortesttime maneuvers for imaging satellites,” J. Guid. Control Dyn., vol. 37, no. 4, pp. 1069–1079, 2014. doi: 10.2514/1.62867

[3] 
Y. Li and F. Yang, “Robust adaptive attitude control for nonrigid spacecraft with quantized control input,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 472–481, 2020. doi: 10.1109/JAS.2020.1003000

[4] 
T. F. He and Z. Wu, “Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1576–1587, 2021.

[5] 
Y. Zhao, J. Wang, F. Yan, and Y. Shen, “Adaptive sliding mode faulttolerant control for type2 fuzzy systems with distributed delays,” Inf. Sci., vol. 473, pp. 227–238, 2019. doi: 10.1016/j.ins.2018.09.002

[6] 
Y. Gao, J. Liu, G. Sun, M. Liu, and L. Wu, “Fault deviation estimation and integral sliding mode control design for lipschitz nonlinear systems,” Syst. Control Lett., vol. 123, pp. 8–15, 2019. doi: 10.1016/j.sysconle.2018.08.006

[7] 
X. Shao, G. Sun, W. Yao, J. Liu, and L. Wu, “Adaptive sliding mode control for quadrotor UAVs with input saturation,” IEEE/ASME Trans. Mechatronics, 2021, DOI: 10.1109/TMECH.2021.3094575.

[8] 
J. Liu, X. Shen, A. Alcaide, Y. Yin, J. Leon, and S. V. L. Wu, “Sliding mode control of gridconnected NPC converters via highgain observer,” IEEE Trans. Ind. Electron., 2021, DOI: 10.1109/TIE.2021.3070496.

[9] 
X. Lin, J. Liu, F. Liu, Z. Liu, Y. Gao, and G. Sun, “Fractionalorder sliding mode approach of buck converters with mismatched disturbances,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 68, no. 9, pp. 3890–3900, 2021. doi: 10.1109/TCSI.2021.3092138

[10] 
M. Rayman and R. Mase, “Dawn’s operations in cruise from vesta to ceres,” Acta Astronaut., vol. 103, pp. 113–118, 2014. doi: 10.1016/j.actaastro.2014.06.042

[11] 
S. Yin, B. Xiao, S. X. Ding, and D. Zhou, “A review on recent development of spacecraft attitude fault tolerant control system,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3311–3320, 2016. doi: 10.1109/TIE.2016.2530789

[12] 
Y. Ma, B. Jiang, and G. Tao, “Adaptive actuator failure identification for microsatellites under closedloop control,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 910–923, 2015. doi: 10.1109/TCST.2014.2348653

[13] 
Z. He, Y. Shardt, D. Wang, B. Hou, and H. Zhou, “An incipient fault detection approach via detrending and denoising,” Control Eng. Pract., vol. 74, no. 5, pp. 1–12, 2018.

[14] 
K. Kumar, N. Abreu, and M. Sinha, “Faulttolerant attitude control of miniature satellites using reaction wheels,” Acta Astronaut., vol. 151, pp. 206–216, 2018. doi: 10.1016/j.actaastro.2018.05.004

[15] 
Y. Ma, B. Jiang, G. Tao, and Y. Cheng, “Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback,” J. Frankl. Inst., vol. 351, no. 1, pp. 296–314, 2014. doi: 10.1016/j.jfranklin.2013.08.028

[16] 
X. Shao, Q. Hu, Y. Shi, and B. Jiang, “Faulttolerant prescribed performance attitude tracking control for spacecraft under input saturation,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 574–582, 2020. doi: 10.1109/TCST.2018.2875426

[17] 
Y. Bai, J. Biggs, X. Wang, and N. Cui, “Attitude tracking with an adaptive sliding mode response to reaction wheel failure,” Eur. J. Control, vol. 42, pp. 67–76, 2018. doi: 10.1016/j.ejcon.2018.02.008

[18] 
X. Huang and G. Duan, “Faulttolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance,” ISA Trans., vol. 98, pp. 161–172, 2020. doi: 10.1016/j.isatra.2019.08.041

[19] 
L. Xing, J. Zhang, C. Liu, and X. Zhang, “Fuzzylogicbased adaptive eventtriggered sliding mode control for spacecraft attitude tracking,” Aerosp. Sci. Technol., vol. 108, p. 106394, 2021.

[20] 
X. Yang, G. Tao, Y. Ma, and R. Qi, “Adaptive actuator failure compensation design for spacecraft attitude control,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 3, pp. 1021–1034, 2016. doi: 10.1109/TAES.2016.130802

[21] 
Y. Ma, H. Ren, B. Jiang, and G. Tao, “Adaptive compensation for actuation sign faults of flexible spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 2, pp. 1288–1300, 2021. doi: 10.1109/TAES.2020.3040518

[22] 
C. Zhang, M. Dai, P. Dong, H. Leung, and J. Wang, “Faulttolerant attitude stabilization for spacecraft with lowfrequency actuator updates: An integraltype eventtriggered approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 729–737, 2021. doi: 10.1109/TAES.2020.3009542

[23] 
H. Marsh, M. Karpenko, and Q. Gong, “Relationships between maneuver time and energy for reaction wheel attitude control,” J. Guid. Control Dyn., vol. 41, no. 2, pp. 335–348, 2018. doi: 10.2514/1.G002843

[24] 
N. Zhou and Y. Xia, “Distributed faulttolerant control design for rigid spacecraft finitetime attitude synchronization,” Int. J. Robust Nonlinear Control, vol. 16, no. 14, pp. 2994–3017, 2016.

[25] 
K. Lu and Y. Xia, “Adaptive attitude tracking control for rigid spacecraft with finitetime convergence,” Automatica, vol. 49, no. 12, pp. 3591–3599, 2013. doi: 10.1016/j.automatica.2013.09.001

[26] 
Q. Shen, D. Wang, S. Zhu, and K. Poh, “Finitetime faulttolerant attitude stabilization for spacecraft with actuator saturation,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2390–2405, 2015. doi: 10.1109/TAES.2015.130725

[27] 
A. Zou, K. Kumar, Z. Hou, and X. Liu, “Finitetime attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network,” IEEE Trans. Syst. Man Cybern. B,Cybern., vol. 41, no. 4, pp. 950–963, 2011. doi: 10.1109/TSMCB.2010.2101592

[28] 
S. Liu, Z. Geng, and J. Sun, “Finitetime attitude control: A finitetime passivity approach,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 1, pp. 102–108, 2015. doi: 10.1109/JAS.2015.7032911

[29] 
H. Gui and G. Vukovich, “Adaptive faulttolerant spacecraft attitude control using a novel integral terminal sliding mode,” Int. J. Robust Nonlinear Control, vol. 27, no. 16, pp. 3174–3196, 2017. doi: 10.1002/rnc.3733

[30] 
L. Chen, Y. Yan, C. Mu, and C. Sun, “Characteristic modelbased discretetime sliding mode control for spacecraft with variable tilt of flexible structures,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 42–50, 2016. doi: 10.1109/JAS.2016.7373761

[31] 
A. Polyakov, “Nonlinear feedback design for fixedtime stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2012. doi: 10.1109/TAC.2011.2179869

[32] 
Z. Zuo, Q.L. Han, B. Ning, X. Ge, and X.M. Zhang, “An overview of recent advances in fixedtime cooperative control of multiagent systems,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2322–2334, 2018. doi: 10.1109/TII.2018.2817248

[33] 
B. Jiang, Q. Hu, and M. Friswell, “Fixedtime attitude control for rigid spacecraft with actuator saturation and faults,” IEEE Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1892–1898, 2016. doi: 10.1109/TCST.2016.2519838

[34] 
J. Gao and Y. Cai, “Fixedtime control for spacecraft attitude tracking based on quaternion,” Acta Astronaut., vol. 115, pp. 303–313, 2015. doi: 10.1016/j.actaastro.2015.05.035

[35] 
R. Kristiansen, P. Nicklasson, and J. Gravdahl, “Satellite attitude control by quaternionbased backstepping,” IEEE Trans. Control Syst. Technol., vol. 17, no. 1, pp. 227–232, 2009. doi: 10.1109/TCST.2008.924576

[36] 
Y. Guo and S. Song, “Adaptive finitetime backstepping control for attitude tracking of spacecraft based on rotation matrix,” Chin. J. Aeronaut., vol. 27, no. 2, pp. 375–382, 2014. doi: 10.1016/j.cja.2014.02.017

[37] 
Q. Hu and X. Shao, “Smooth finitetime faulttolerant attitude tracking control for rigid spacecraft,” Aerosp. Sci. Technol., vol. 55, pp. 144–157, 2016. doi: 10.1016/j.ast.2016.05.019

[38] 
D. Lee, “Faulttolerant finitetime controller for attitude tracking of rigid spacecraft using intermediate quaternion,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 540–553, 2021. doi: 10.1109/TAES.2020.3024399

[39] 
Q. Hu, B. Li, X. Huo, and Z. Shi, “Spacecraft attitude tracking control under actuator magnitude deviation and misalignment,” Aerosp. Sci. Technol., vol. 28, pp. 266–280, 2013. doi: 10.1016/j.ast.2012.11.007

[40] 
F. Leve and M. Jah, “Spacecraft actuator alignment determination through nullmotion excitation,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 3, pp. 2336–2342, 2014. doi: 10.1109/TAES.2013.120187

[41] 
T. Mercker and M. Akella, “Adaptive estimation and control algorithms for certain independent control axis misalignments,” J. Guid. Control Dyn., vol. 37, no. 1, pp. 72–85, 2014. doi: 10.2514/1.61735

[42] 
H. Gui and G. Vukovich, “Adaptive integral sliding mode control for spacecraft attitude tracking with actuator uncertainty,” J. Frankl. Inst., vol. 352, no. 12, pp. 5832–5852, 2015. doi: 10.1016/j.jfranklin.2015.10.001

[43] 
B. Xiao, Q. Hu, D. Wang, and E. K. Poh, “Attitude tracking control of rigid spacecraft with actuator misalignment and fault,” IEEE Trans. Control Syst. Technol., vol. 21, no. 6, pp. 2360–2366, 2013. doi: 10.1109/TCST.2012.2237403

[44] 
Q. Hu, B. Xiao, D. Wang, and E. Poh, “Attitude control of spacecraft with actuator uncertainty,” J. Guid. Control Dyn., vol. 36, no. 6, pp. 1771–1776, 2013. doi: 10.2514/1.58624

[45] 
R. Qi, W. Su, and Y. Meng, “Faulttolerant attitude controller design for deep space probe via adaptive fast terminal sliding mode control,” ASME. J. Dyn. Sys.,Meas.,Control., vol. 141, no. 9, p. 091006, 2019. doi: 10.1115/1.4042548

[46] 
Z. Wang, Y. Su, and L. Zhang, “A new nonsingular terminal sliding mode control for rigid spacecraft attitude tracking,” ASME. J. Dyn. Sys., Meas., Control., vol. 140, no. 5, p. 051006, 2018.

[47] 
H. Yoon and P. Tsiotras, “Adaptive spacecraft attitude tracking control with actuator uncertainties,” J. Astronaut. Sci., vol. 56, no. 2, pp. 251–268, 2008. doi: 10.1007/BF03256551

[48] 
S. Murugesan and P. S. Goel, “Fault tolerant spacecraft attitude control system,” SadhanaAcad. Proc. Eng. Sci, vol. 11, no. 1–2, pp. 233–261, 1987.

[49] 
Q. Shen, D. Wang, S. Zhu, and E. K. Poh, “Integraltype sliding mode faulttolerant control for attitude stabilization of spacecraft,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1131–1138, 2015. doi: 10.1109/TCST.2014.2354260

[50] 
L. Ji, C. Qian, and M. T. Frye, “A dualobserver design for global output feedback stabilization of nonlinear systems with loworder and highorder nonlinearities,” Int. J. Robust Nonlinear Control, vol. 19, no. 15, pp. 1697–1720, 2009. doi: 10.1002/rnc.1401

[51] 
H. Alwi, C. Edwards, O. Stroosma, and J. A. Mulder, “Fault tolerant sliding mode control design with piloted simulator evaluation,” J. Guid.,Control,Dyn., vol. 31, no. 5, pp. 1186–1201, 2008. doi: 10.2514/1.35066

[52] 
C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications. Taylor Francis, 1998.

[53] 
C.C. Chen, S. S.D. Xu, and Y.W. Liang, “Study of nonlinear integral sliding mode faulttolerant control,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 1160–1168, 2018.

[54] 
H. Ahmed, H. Ríos, B. Ayalew, and Y. Wang, “Secondorder slidingmode differentiators: An experimental comparative analysis using Van der Pol oscillator,” Int. J. Control, vol. 91, no. 9, pp. 2100–2112, 2018. doi: 10.1080/00207179.2018.1442023

[55] 
Q. Chen, M. Tao, X. He, and L. Tao, “Adaptive nonsingular fixedtime attitude tracking control of quadrotor UAVs,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 5, pp. 2864–2877, 2021. doi: 10.1109/TAES.2021.3067610

[56] 
L. Wang, S. Jiang, M. Ge, C. Hu, and J. Hu, “Finite/fixedtime synchronization of memristor chaotic systems and image encryption application,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 68, no. 12, pp. 4957–4969, 2021. doi: 10.1109/TCSI.2021.3121555

[57] 
D. C. R. Furfaro and D. R. Wibben, “Asteroid precision landing via multiple sliding surfaces guidance techniques,” J. Guid.,Control,Dyn., vol. 36, no. 4, pp. 1075–1092, 2013. doi: 10.2514/1.58246

[58] 
L. Wang, T. Chai, and L. Zhai, “Neuralnetworkbased terminal slidingmode control of robotic manipulators including actuator dynamics,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3296–3304, 2009. doi: 10.1109/TIE.2008.2011350
