IEEE/CAA Journal of Automatica Sinica
Citation: | M. Ballesteros, R. Q. Fuentes-Aguilar, and I. Chairez, “Exponential continuous non-parametric neural identifier with predefined convergence velocity,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1049–1060, Jun. 2022. doi: 10.1109/JAS.2022.105650 |
[1] |
L. Ljung, System Identification: Theory for the User. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999.
|
[2] |
R. Haber and L. Keviczky, Nonlinear System Identification: Input-Output Modeling Approach. Netherlands: Springer, 1999.
|
[3] |
L. Ljung, “Some aspects on nonlinear system identification,” IFAC Proc. Volumes, vol. 39, no. 1, pp. 553–564, Jan. 2006. doi: 10.3182/20060329-3-AU-2901.00085
|
[4] |
S. A. Billings, “Identification of nonlinear systems: A survey,” IEEE Proc. D-Control Theory Appl., vol. 127, no. 6, pp. 272–285, Nov. 1980. doi: 10.1049/ip-d.1980.0047
|
[5] |
J. Roll, A. Nazin, and L. Ljung, “Nonlinear system identification via direct weight optimization,” Automatica, vol. 41, no. 3, pp. 475–490, Mar. 2005. doi: 10.1016/j.automatica.2004.11.010
|
[6] |
S. Jagannathan and F. L. Lewis, “Identification of nonlinear dynamical systems using multilayered neural networks,” Automatica, vol. 32, no. 12, pp. 1707–1712, Dec. 1996. doi: 10.1016/S0005-1098(96)80007-0
|
[7] |
O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Berlin Heidelberg: Springer-Verlag, 2001.
|
[8] |
K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, Jul. 1989. doi: 10.1016/0893-6080(89)90020-8
|
[9] |
N. E. Cotter, “The Stone-Weierstrass theorem and its application to neural networks,” IEEE Trans. Neural Netw., vol. 1, no. 4, pp. 290–295, Dec. 1990. doi: 10.1109/72.80265
|
[10] |
K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Netw., vol. 4, no. 2, pp. 251–257, Mar. 1991. doi: 10.1016/0893-6080(91)90009-T
|
[11] |
J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257, Jun. 1991. doi: 10.1162/neco.1991.3.2.246
|
[12] |
G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control Signal. Syst., vol. 2, no. 4, pp. 303–314, Dec. 1989. doi: 10.1007/BF02551274
|
[13] |
A. S. Poznyak, E. N. Sanchez, and W. Yu, Differential Neural Networks for Robust Nonlinear Control (Identification, State Estimation and Trajectory Tracking). New Jersey: World Scientific, 2001.
|
[14] |
C. P. Bechlioulis and G. A. Rovithakis, “Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems,” Automatica, vol. 45, no. 2, pp. 532–538, Feb. 2009. doi: 10.1016/j.automatica.2008.08.012
|
[15] |
C. P. Bechlioulis and G. A. Rovithakis, “Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems,” IEEE Trans. Automat. Control, vol. 55, no. 5, pp. 1220–1226, May 2010. doi: 10.1109/TAC.2010.2042508
|
[16] |
Y. B. Huang, J. Na, X. Wu, X. Q. Liu, and Y. Guo, “Adaptive control of nonlinear uncertain active suspension systems with prescribed performance,” ISA Trans., vol. 54, pp. 145–155, Jan. 2015. doi: 10.1016/j.isatra.2014.05.025
|
[17] |
G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Concurrent learning adaptive control of linear systems with exponentially convergent bounds,” Int. J. Adapt. Control Signal Process., vol. 27, no. 4, pp. 280–301, Apr. 2013. doi: 10.1002/acs.2297
|
[18] |
R. Kamalapurkar, J. R. Klotz, and W. E. Dixon, “Concurrent learning-based approximate feedback-Nash equilibrium solution of N-player nonzero-sum differential games,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 3, pp. 239–247, Jul. 2014. doi: 10.1109/JAS.2014.7004681
|
[19] |
E. B. Kosmatopoulos, M. A. Christodoulou, and P. A. Ioannou, “Dynamical neural networks that ensure exponential identification error convergence,” Neural Netw., vol. 10, no. 2, pp. 299–314, Mar. 1997. doi: 10.1016/S0893-6080(96)00060-3
|
[20] |
R. Q. Fuentes-Aguilar and I. Chairez, “Adaptive tracking control of state constraint systems based on differential neural networks: A barrier lyapunov function approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 12, pp. 5390–5401, Dec. 2020. doi: 10.1109/TNNLS.2020.2966914
|
[21] |
K. Q. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems. Boston, MA: Birkhäuser, 2003.
|
[22] |
K. Q. Gu and S. I. Niculescu, “Survey on recent results in the stability and control of time-delay systems,” J. Dyn. Syst. Meas. Control, vol. 125, no. 2, pp. 158–165, Jun. 2003. doi: 10.1115/1.1569950
|
[23] |
D. A. Carlson, A. B. Haurie, and A. Leizarowitz, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Berlin, Heidelberg: Springer, 2012.
|
[24] |
V. Gaitsgory, L. Grüne, and N. Thatcher, “Stabilization with discounted optimal control,” Syst. Control Lett., vol. 82, pp. 91–98, Aug. 2015. doi: 10.1016/j.sysconle.2015.05.010
|
[25] |
H. K. Khalil, Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall, 2002.
|
[26] |
K. I. Funahashi, “On the approximate realization of continuous mappings by neural networks,” Neural Netw., vol. 2, no. 3, pp. 183–192, Dec. 1989. doi: 10.1016/0893-6080(89)90003-8
|
[27] |
A. R. Barron, “Approximation and estimation bounds for artificial neural networks,” Mach. Learn., vol. 14, no. 1, pp. 115–133, Jan. 1994.
|
[28] |
S. Haykin, Neural Networks: A Comprehensive Foundation. New York: IEEE, 1994.
|
[29] |
S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function approximation in reinforcement learning,” Neural Netw., vol. 107, pp. 3–11, Nov. 2018. doi: 10.1016/j.neunet.2017.12.012
|
[30] |
M. B. Stinchcombe, “Neural network approximation of continuous functionals and continuous functions on compactifications,” Neural Netw., vol. 12, no. 3, pp. 467–477, Apr. 1999. doi: 10.1016/S0893-6080(98)00108-7
|
[31] |
B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in adaptive function approximation and the functional-link net,” IEEE Trans. Neural Netw., vol. 6, no. 6, pp. 1320–1329, Nov. 1995. doi: 10.1109/72.471375
|
[32] |
D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas. 2nd ed. Princeton, NJ: Princeton University Press, 2009.
|
[33] |
A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers. vol. 1. Deterministic Techniques. Amsterdam: Elsevier, 2008.
|
[34] |
A. Poznyak, A. Polyakov, and V. Azhmyakov, Attractive Ellipsoids in Robust Control. Berlin: Springer, 2014.
|
[35] |
M. W. Spong, J. De Schutter, H. Bruyninckx, and J. T. Y. Wen, Control of Robots and Manipulators. CRC Press, 2018.
|