A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 6
Jun.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Yang, Z. W. Liu, T. F. Zhou, and Q. Song, “Part decom- position and refinement network for human parsing,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1111–1114, Jun. 2022. doi: 10.1109/JAS.2022.105647
Citation: L. Yang, Z. W. Liu, T. F. Zhou, and Q. Song, “Part decom- position and refinement network for human parsing,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1111–1114, Jun. 2022. doi: 10.1109/JAS.2022.105647

Part Decomposition and Refinement Network for Human Parsing

doi: 10.1109/JAS.2022.105647
More Information
  • loading
  • [1]
    S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, “Learning human-object interactions by graph parsing neural networks,” in Proc. ECCV, 2018.
    [2]
    T. Zhou, S. Qi, W. Wang, J. Shen, and S.-C. Zhu, “Cascaded parsing of human-object interaction recognition,” in Proc. TPAMI, 2021.
    [3]
    K. Gong, X. Liang, Y. Li, Y. Chen, and L. Lin, “Instance-level human parsing via part grouping network,” in Proc. ECCV, 2018.
    [4]
    T. Zhou, W. Wang, S. Liu, Y. Yang, and L. V. Gool, “Differentiable multi-granularity human representation learning for instance-aware human semantic parsing,” in Proc. ICCV, 2021.
    [5]
    T. Ruan, T. Liu, Z. Huang, Y. Wei, S. Wei, Y. Zhao, and T. Huang, “Devil in the details: Towards accurate single and multiple human parsing,” in Proc. AAAI, 2019.
    [6]
    L. Yang, Q. Song, Z. Wang, and M. Jiang, “Parsing r-CNN for instance-level human analysis,” in Proc. CVPR, 2019.
    [7]
    W. Wang, Z. Zhang, S. Qi, J. Shen, Y. Pang, and L. Shao, “Learning compositional neural information fusion for human parsing,” in Proc. ICCV, 2019.
    [8]
    W. Wang, H. Zhu, J. Dai, Y. Pang, J. Shen, and L. Shao, “Hierarchical human parsing with typed part-relation reasoning,” in Proc. CVPR, 2020.
    [9]
    L. Yang, Q. Song, Z. Wang, M. Hu, C. Liu, X. Xin, W. Jia, and S. Xu, “Renovating parsing r-CNN for accurate multiple human parsing,” in Proc. ECCV, 2020.
    [10]
    X. Zhang, Y. Chen, B. Zhu, J. Wang, and M. Tang, “Part-aware context network for human parsing,” in Proc. CVPR, 2020.
    [11]
    L. Yang, Q. Song, Z. Wang, Z. Liu, S. Xu, and Z. Li, “Quality-aware network for human parsing,” arXiv: 2103.05997, 2021.
    [12]
    K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-CNN,” in Proc. ICCV, 2017.
    [13]
    X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, “SOLO: Segmenting objects by locations,” in Proc. ECCV, 2020.
    [14]
    W. Xinlong, Z. Rufeng, K. Tao, L. Lei, and S. Chunhua, “Solov2: Dynamic, faster and stronger,” in Proc. NIPS, 2020.
    [15]
    F. Xia, P. Wang, X. Chen, and A. L. Yuille, “Joint multi-person pose estimation and semantic part segmentation,” in Proc. CVPR, 2017.
    [16]
    X. Liang, K. Gong, X. Shen, and L. Lin, “Look into person: Joint human parsing and pose estimation network and a new benchmark,” in Proc. TPAMI, 2018.
    [17]
    L. Yang, Q. Song, Y. Wu, and M. Hu, “Attention inspiring receptive-fields network for learning invariant representations,” in Proc. TNNLS, 2018.
    [18]
    Z. Zhang, C. Su, L. Zheng, and X. Xie, “Correlating edge, pose with parsing,” in Proc. CVPR, 2020.
    [19]
    Y. Liu, L. Zhao, S. Zhang, and J. Yang, “Hybrid resolution network using edge guided region mutual information loss for human parsing,” in Proc. ACM MM, 2020.
    [20]
    R. Ji, D. Du, L. Zhang, L. Wen, Y. Wu, C. Zhao, F. Huang, and S. Lyu, “Learning semantic neural tree for human parsing,” in Proc. ECCV, 2020.
    [21]
    N. Wang and H. Ai, “Who blocks who: Simultaneous clothing segmentation for grouping images,” in Proc. ICCV, 2011.
    [22]
    L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. Yuille, “Max margin and/or graph learning for parsing the human body,” in Proc. CVPR, 2008.
    [23]
    K. Gong, Y. Gao, X. Liang, X. Shen, and L. Lin, “Graphonomy: Universal human parsing via graph transfer learning,” in Proc. CVPR, 2019.
    [24]
    S. Wang, Y. Gong, J. Xing, L. Huang, C. Huang, and W. Hu, “RDSNet: A new deep architecture for reciprocal object detection and instance segmentation,” in Proc. AAAI, 2020.
    [25]
    T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proc. ICCV, 2017.
    [26]
    N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Improving object detection with one line of code,” in Proc. ICCV, 2017.
    [27]
    H. Qin, W. Hong, W.-C. Hung, Y.-H. Tsai, and M.-H. Yang, “A top-down unified framework for instance-level human parsing,” in Proc. BMVC, 2019.
    [28]
    X. Liu, M. Zhang, W. Liu, J. Song, and T. Mei, “BraidNet: Braiding semantics and details for accurate human parsing,” in Proc. ACM MM, 2019.
    [29]
    L. Chen, Y. Yang, J. Wang, W. Xu, and A. Yuille, “Attention to scale: Scale-aware semantic image segmentation,” in Proc. CVPR, 2016.
    [30]
    Y. Luo, Z. Zheng, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Macro-micro adversarial network for human parsing,” in Proc. ECCV, 2018.
    [31]
    Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for semantic segmentation,” in Proc. ECCV, 2020.
    [32]
    P. Li, Y. Xu, Y. Wei, and Y. Yang, “Self-correction for human parsing,” arXiv:1910.09777, 2019.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (607) PDF downloads(64) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return