IEEE/CAA Journal of Automatica Sinica
Citation: | H. C. Ji and Z. Y. Zuo, “Multiview locally linear embedding for spectral-spatial dimensionality reduction of hyperspectral imagery,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1091–1094, Jun. 2022. doi: 10.1109/JAS.2022.105638 |
[1] |
R. Dian, S. Li, and X. Kang, “Regularizing hyperspectral and multispectral image fusion by CNN denoiser,” IEEE Trans. Neural Networks and Learning Systems, vol. 32, no. 3, pp. 1124–1135, 2021. doi: 10.1109/TNNLS.2020.2980398
|
[2] |
L. Zhang, L. Zhang, D. Tao, and X. Huang, “On combining multiple features for hyperspectral remote sensing image classification,” IEEE Trans. Geoscience and Remote Sensing, vol. 50, no. 3, pp. 879–893, 2012. doi: 10.1109/TGRS.2011.2162339
|
[3] |
Z. Cai and W. Zhu, “Feature selection for multi-label classification using neighborhood preservation,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 320–330, 2018. doi: 10.1109/JAS.2017.7510781
|
[4] |
H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010. doi: 10.1002/wics.101
|
[5] |
Y. Wang, Z. Zhang, and Y. Lin, “Multi-cluster feature selection based on isometric mapping,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 570–572, 2022. doi: 10.1109/JAS.2021.1004398
|
[6] |
S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000. doi: 10.1126/science.290.5500.2323
|
[7] |
M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” Advances in Neural Information Processing Systems, vol. 14, pp. 585–591, 2001.
|
[8] |
D. Hong, N. Yokoya, and X. X. Zhu, “Learning a robust local manifold representation for hyperspectral dimensionality reduction,” IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 6, pp. 2960–2975, 2017. doi: 10.1109/JSTARS.2017.2682189
|
[9] |
G. Shi, H. Huang, and L. Wang, “Unsupervised dimensionality reduction for hyperspectral imagery via local geometric structure feature learning,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 8, pp. 1425–1429, 2020. doi: 10.1109/LGRS.2019.2944970
|
[10] |
X. Jiang, L. Xiong, Q. Yan, Y. Zhang, X. Liu, and Z. Cai, “Unsupervised dimensionality reduction for hyperspectral imagery via laplacian regularized collaborative representation projection,” IEEE Geoscience and Remote Sensing Letters, p. 6007805, 2022.
|
[11] |
J. Wen, J. E. Fowler, M. He, Y.-Q. Zhao, C. Deng, and V. Menon, “Orthogonal nonnegative matrix factorization combining multiple features for spectral-spatial dimensionality reduction of hyperspectral imagery,” IEEE Trans. Geoscience and Remote Sensing, vol. 54, no. 7, pp. 4272–4286, 2016. doi: 10.1109/TGRS.2016.2539154
|
[12] |
J. Jiang, J. Ma, C. Chen, Z. Wang, Z. Cai, and L. Wang, “SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery,” IEEE Trans. Geoscience and Remote Sensing, vol. 56, no. 8, pp. 4581–4593, 2018. doi: 10.1109/TGRS.2018.2828029
|
[13] |
T. Xia, D. C. Tao, T. Mei, and Y. D. Zhang, “Multiview spectral embedding,” IEEE Trans. Systems,Man,and Cybernetics,Part B (Cybernetics)
|
[14] |
L. Zhang, L. P. Zhang, D. C. Tao, and X. Huang, “A modified stochastic neighbor embedding for multi-feature dimension reduction of remote sensing images,” ISPRS J. Photogrammetry and Remote Sensing, vol. 83, pp. 30–39, 2013.
|
[15] |
R. Bhatia, Matrix Analysis. Berlin, Germany: Springer Science & Business Media, 2013, vol. 169, pp. 1–347.
|
[16] |
M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “CloudID: Trustworthy cloud-based and cross-enterprise biometric identification,” Expert Systems With Applications, vol. 42, no. 21, pp. 7905–7916, 2015. doi: 10.1016/j.eswa.2015.06.025
|