IEEE/CAA Journal of Automatica Sinica
Citation: | J. F. Hu, Z. Chen, X. Ma, H. Lai, and B. Yao, “A telepresence-guaranteed control scheme for teleoperation applications of transferring weight-unknown objects,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1015–1025, Jun. 2022. doi: 10.1109/JAS.2022.105626 |
[1] |
Y. Wang, F. Yan, J. Chen, F. Ju, and B. Chen, “A new adaptive time-delay control scheme for cable-driven manipulators,” IEEE Trans. Industrial Informatics, vol. 15, no. 6, pp. 3469–3481, 2019. doi: 10.1109/TII.2018.2876605
|
[2] |
Y. Wang, B. Li, F. Yan, and B. Chen, “Practical adaptive fractional-order nonsingular terminal sliding mode control for a cable-driven manipulator,” Int. Journal of Robust and Nonlinear Control, vol. 29, no. 5, pp. 1396–1417, 2019.
|
[3] |
C. Hu, T. Ou, Y. Zhu, and L. Zhu, “Gru-type LARC strategy for precision motion control with accurate tracking error prediction,” IEEE Trans. Industrial Electronics, vol. 68, no. 1, pp. 812–820, 2021. doi: 10.1109/TIE.2020.2991997
|
[4] |
C. Hu, T. Ou, H. Chang, Y. Zhu, and L. Zhu, “Deep GRU neural network prediction and feedforward compensation for precision multiaxis motion control systems,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 3, pp. 1377–1388, 2020.
|
[5] |
Y. Gu, B. Yao, and G. Lee, “Exponential stabilization of fully actuated planar bipedal robotic walking with global position tracking capabilities,” Journal of Dynamic Systems,Measurement,and Control, vol. 140, no. 5, 2018.
|
[6] |
W. Sun, X. Wang, and C. Zhang, “A model-free control strategy for vehicle lateral stability with adaptive dynamic programming,” IEEE Trans. Industrial Electronics, vol. 67, no. 12, pp. 10693–10701, 2020. doi: 10.1109/TIE.2019.2958308
|
[7] |
W. Sun, S. Tang, H. Gao, and J. Zhao, “Two time-scale tracking control of nonholonomic wheeled mobile robots,” IEEE Trans. Control Systems Technology, vol. 24, no. 6, pp. 2059–2069, 2016. doi: 10.1109/TCST.2016.2519282
|
[8] |
Z. Chen, F. Huang, W. Chen, J. Zhang, W. Sun, J. Chen, J. J. Gu, and S. Q. Zhu, “RBFNN-based adaptive sliding mode control design for delayed nonlinear multilateral telerobotic system with cooperative manipulation,” IEEE Trans. Industrial Informatics, vol. 16, pp. 1236–1247, 2020. doi: 10.1109/TII.2019.2927806
|
[9] |
W.-K. Yoon, T. Goshozono, H. Kawabe, M. Kinami, Y. Tsumaki, M. Uchiyama, M. Oda, and T. Doi, “Model-based space robot teleoperation of ETS-VII manipulator,” IEEE Trans. Robotics and Automation, vol. 20, no. 3, pp. 602–612, 2004. doi: 10.1109/TRA.2004.824700
|
[10] |
W. Wei and Y. Kui, “Teleoperated manipulator for leak detection of sealed radioactive sources,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, 2004, pp. 1682–1687.
|
[11] |
X. Ma, C. Song, W. Chiu, and Z. Li, “Autonomous flexible endoscope for minimally invasive surgery with enhanced safety,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2607–2613, 2019. doi: 10.1109/LRA.2019.2895273
|
[12] |
G. H. Ballantyne, “Robotic surgery, telerobotic surgery, telepresence, and telementoring,” Surgical Endoscopy, vol. 16, no. 10, pp. 1389–1402, 2002. doi: 10.1007/s00464-001-8283-7
|
[13] |
D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robotics and Automation, vol. 9, no. 5, pp. 624–637, 1993. doi: 10.1109/70.258054
|
[14] |
M. U. Asad, U. Farooq, J. Gu, G. Abbas, R. Liu, and V. E. Balas, “A composite state convergence scheme for bilateral teleoperation systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1166–1178, 2019. doi: 10.1109/JAS.2019.1911690
|
[15] |
A. Suzuki and K. Ohnishi, “Frequency-domain damping design for time-delayed bilateral teleoperation system based on modal space analysis,” IEEE Trans. Industrial Electronics, vol. 60, no. 1, pp. 177–190, 2013. doi: 10.1109/TIE.2012.2183832
|
[16] |
S. Munir and W. J. Book, “Internet-based teleoperation using wave variables with prediction,” IEEE/ASME Trans. Mechatronics, vol. 7, no. 2, pp. 124–133, 2002. doi: 10.1109/TMECH.2002.1011249
|
[17] |
Y. Ye, Y. Pan, Y. Gupta, and J. Ware, “A power-based time domain passivity control for haptic interfaces,” IEEE Trans. Control Systems Technology, vol. 19, no. 4, pp. 874–883, 2011. doi: 10.1109/TCST.2010.2062513
|
[18] |
Z. Zhao, J. Yang, S. Li, and W.-H. Chen, “Composite nonlinear bilateral control for teleoperation systems with external disturbances,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1220–1229, 2018.
|
[19] |
Z. Chen, F. Huang, C. Yang, and B. Yao, “Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance,” IEEE Trans. Industrial Electronics, vol. 67, no. 1, pp. 746–756, 2020. doi: 10.1109/TIE.2019.2898587
|
[20] |
Z. Chen, F. Huang, W. Sun, J. Gu, and B. Yao, “RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2, pp. 906–918, 2020. doi: 10.1109/TMECH.2019.2962081
|
[21] |
S. Sirouspour and A. Shahdi, “Model predictive control for transparent teleoperation under communication time delay,” IEEE Trans. Robotics, vol. 22, no. 6, pp. 1131–1145, 2006. doi: 10.1109/TRO.2006.882939
|
[22] |
J. Hu, Z. Chen, M. Yuan, and B. Yao, “Adaptive robust control of a 7-DoFs teleoperation robot system with payload variations and disturbances,” in Proc. ASME Dynamic System and Control Conf., 2018, p. 9168.
|
[23] |
C. Yang, X. Wang, Z. Li, Y. Li, and C. Y. Su, “Teleoperation Control Based on Combination of Wave Variable and Neural Networks,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2125–2136, 2017.
|
[24] |
C. Ding and L. Lu, “A tilting-rotor unmanned aerial vehicle for enhanced aerial locomotion and manipulation capabilities: Design, control, and applications,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 4, pp. 2237–2248, 2021.
|
[25] |
Xiong, X. Zhu, A. Song, L. Hu, X. Liu, and L. Feng, “A target grabbing strategy for telerobot based on improved stiffness display device,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 661–667, 2016.
|
[26] |
S. Lampinen, J. Koivumäki, and J. Mattila, “Bilateral teleoperation of a hydraulic robotic manipulator in contact with physical and virtual constraints,” in Proc. BATH/ASME 2018 Symp. Fluid Power and Motion Control.
|
[27] |
H. Su, C. Yang, H. Mdeihly, A. Rizzo, G. Ferrigno, and E. De Momi, “Neural network enhanced robot tool identification and calibration for bilateral teleoperation,” IEEE Access, vol. 7, pp. 122041–122051, 2019. doi: 10.1109/ACCESS.2019.2936334
|
[28] |
R. Ouyang and R. Howe, “Low-cost fiducial-based 6-axis force-torque sensor,” in Proc. IEEE Int. Conf. Robotics and Automation, 2020, pp. 1653–1659.
|
[29] |
F. Vicentini, “Collaborative robotics: A survey,” Journal of Mechanical Design, pp. 1–29, 2020.
|
[30] |
Z. Chen, S. Yan, M. Yuan, B. Yao, and J. Hu, “Modular development of master-slave asymmetric teleoperation systems with a novel workspace mapping algorithm,” IEEE Access, vol. 6, pp. 15356–15364, 2018. doi: 10.1109/ACCESS.2018.2809860
|
[31] |
Z. Ju, C. Yang, Z. Li, L. Cheng, and H. Ma, “Teleoperation of humanoid baxter robot using haptic feedback,” in Proc. IEEE Int. Conf. Multisensor Fusion and Information Integration for Intelligent Systems, 2014, pp. 1–6.
|
[32] |
B. Yao, “Advanced motion control: From classical PID to nonlinear adaptive robust control,” in Proc. 11th IEEE Int. Workshop Advanced Motion Control, 2010, pp. 815–829.
|
[33] |
M. Gautier and W. Khalil, “Direct calculation of minimum set of inertial parameters of serial robots,” IEEE Trans. Robotics and Automation, vol. 6, no. 3, pp. 368–373, Jun. 1990. doi: 10.1109/70.56655
|
[34] |
A. Calanca, L. M. Capisani, A. Ferrara, and L. Magnani, “MIMO closed loop identification of an industrial robot,” IEEE Trans. Control Systems Technology, vol. 19, no. 5, pp. 1214–1224, 2011. doi: 10.1109/TCST.2010.2077294
|
[35] |
A. Wahrburg, J. Bos, F. Dai, and H. Ding, “Motor-current-based estimation of cartesian contact forces and torques for robotic manipulators and its application to force control,” IEEE Trans. Automation Science and Engineering, vol. 15, no. 2, pp. 879–886, 2018. doi: 10.1109/TASE.2017.2691136
|
[36] |
A. Mohammadi, M. Tavakoli, H. J. Marquez, and F. Hashemzadeh, “Nonlinear disturbance observer design for robotic manipulators,” Control Engineering Practice, vol. 21, no. 3, pp. 253–267, 2013. doi: 10.1016/j.conengprac.2012.10.008
|
[37] |
R. Patelski and Dutkiewicz, “On the stability of ADRC for manipulators with modelling uncertainties,” ISA Transactions, vol. 102, pp. 295–303, 2020. doi: 10.1016/j.isatra.2020.02.027
|
[38] |
Z. Chen, Y.-J. Pan, and J. Gu, “Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays,” Int. Journal of Robust and Nonlinear Control, vol. 26, no. 12, pp. 2708–2728, 2016. doi: 10.1002/rnc.3472
|
[39] |
G. Goodwin and D. Mayne, “A parameter estimation perspective of continuous time model reference adaptive control,” Automatica, vol. 23, no. 1, pp. 57–70, 1987. doi: 10.1016/0005-1098(87)90118-X
|
[40] |
Rethinkrobotics, https://www.3dsystems.com/haptics-devices/touch.WIKI.
|
[41] |
J. Jin and N. Gans, “Parameter identification for industrial robots with a fast and robust trajectory design approach,” Robotics and Computer-Integrated Manufacturing, vol. 31, pp. 21–29, 2015. doi: 10.1016/j.rcim.2014.06.004
|