IEEE/CAA Journal of Automatica Sinica
Citation: | H. Geng, Z. D. Wang, Y. Chen, X. J. Yi, and Y. H. Cheng, “Variance-constrained filtering fusion for nonlinear cyber-physical systems with the denial-of-service attacks and stochastic communication protocol,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 978–989, Jun. 2022. doi: 10.1109/JAS.2022.105623 |
[1] |
X. M. Zhang and Q. L. Han, “Network-based H∞ filtering for discrete-time systems,” IEEE Trans. Signal Process., vol. 60, no. 2, pp. 956–961, Feb. 2012. doi: 10.1109/TSP.2011.2175224
|
[2] |
S. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders, and T. J. Overbye, “SCPSE: Security-oriented cyber-physical state estimation for power grid critical infrastructures,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1790–1799, Dec. 2012. doi: 10.1109/TSG.2012.2217762
|
[3] |
K. B. Adedeji and Y. Hamam, “Cyber-physical systems for water supply network management: Basics, challenges, and roadmap,” Sustainability, vol. 12, no. 22, p. 9555, Nov. 2020.
|
[4] |
C. W. Xing, Y. D. Jing, S. Wang, S. D. Ma, and H. V. Poor, “New viewpoint and algorithms for water-filling solutions in wireless communications,” IEEE Trans. Signal Process., vol. 68, pp. 1618–1634, Feb. 2020. doi: 10.1109/TSP.2020.2973488
|
[5] |
B. Chen, W. A. Zhang, and L. Yu, “Distributed finite-horizon fusion Kalman filtering for bandwidth and energy constrained wireless sensor networks,” IEEE Trans. Signal Process., vol. 62, no. 4, pp. 797–812, Feb. 2014. doi: 10.1109/TSP.2013.2294603
|
[6] |
J. Michniewicz and G. Reinhart, “Cyber-physical robotics-automated analysis, programming and configuration of robot cells based on cyber-physical-systems,” Proc. Technol., vol. 15, pp. 566–575, Dec. 2014. doi: 10.1016/j.protcy.2014.09.017
|
[7] |
H. Geng, Y. Liang, and Y. H. Cheng, “Target state and markovian jump ionospheric height bias estimation for OTHR tracking systems,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 50, no. 7, pp. 2599–2611, Jul. 2020. doi: 10.1109/TSMC.2018.2822819
|
[8] |
Y. L. Huang, Y. G. Zhang, and J. A. Chambers, “A novel Kullback-Leibler divergence minimization-based adaptive student’s t-filter,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5417–5432, Oct. 2019. doi: 10.1109/TSP.2019.2939079
|
[9] |
Y. L. Huang, Y. G. Zhang, Y. X. Zhao, and J. A. Chambers, “A novel robust gaussian-student’s t mixture distribution based Kalman filter,” IEEE Trans. Signal Process., vol. 67, no. 13, pp. 3606–3620, Jul. 2019. doi: 10.1109/TSP.2019.2916755
|
[10] |
D. R. Ding, Q. L. Han, X. H. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021. doi: 10.1109/TSMC.2020.3041121
|
[11] |
L. Li and G. H. Yang, “Remote observer-based robust control for cyber-physical systems under asynchronous DoS attacks: An intelligent approach,” Int. J. Syst. Sci., vol. 52, no. 16, pp. 3511–3525, May 2021. doi: 10.1080/00207721.2021.1931727
|
[12] |
C. B. Wen, Z. D. Wang, T. Geng, and F. E. Alsaadi, “Event-based distributed recursive filtering for state-saturated systems with redundant channels,” Inf. Fusion, vol. 39, pp. 96–107, Jan. 2018. doi: 10.1016/j.inffus.2017.04.004
|
[13] |
T. Wen, C. B. Wen, C. Roberts, and B. G. Cai, “Distributed filtering for a class of discrete-time systems over wireless sensor networks,” J. Franklin Inst., vol. 357, no. 5, pp. 3038–3055, Mar. 2020. doi: 10.1016/j.jfranklin.2020.02.005
|
[14] |
W. L. Chen, J. Hu, Z. H. Wu, X. Y. Yu, and D. Y. Chen, “Finite-time memory fault detection filter design for nonlinear discrete systems with deception attacks,” Int. J. Syst. Sci., vol. 51, no. 8, pp. 1464–1481, May 2020. doi: 10.1080/00207721.2020.1765219
|
[15] |
Y. Cui, Y. R. Liu, W. B. Zhang, and F. E. Alsaadi, “Sampled-based consensus for nonlinear multiagent systems with deception attacks: The decoupled method,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 1, pp. 561–573, Jan. 2021. doi: 10.1109/TSMC.2018.2876497
|
[16] |
W. L. He, F. Qian, Q. L. Han, and G. R. Chen, “Almost sure stability of nonlinear systems under random and impulsive sequential attacks,” IEEE Trans. Autom. Control, vol. 65, no. 9, pp. 3879–3886, Sept. 2020. doi: 10.1109/TAC.2020.2972220
|
[17] |
L. Liu, L. F. Ma, J. Zhang, and Y. M. Bo, “Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks,” Int. J. Syst. Sci., vol. 52, no. 6, pp. 1192–1205, Jan. 2021. doi: 10.1080/00207721.2021.1872118
|
[18] |
J. H. Song, D. R. Ding, H. J. Liu, and X. L. Wang, “Non-fragile distributed state estimation over sensor networks subject to DoS attacks: The almost sure stability,” Int. J. Syst. Sci., vol. 51, no. 6, pp. 1119–1132, Apr. 2020. doi: 10.1080/00207721.2020.1752843
|
[19] |
Y. F. Zhao, W. Yao, J. J. Nan, J. K. Fang, X. M. Ai, J. Y. Wen, and S. J. Chen, “Resilient adaptive wide-area damping control to mitigate false data injection attacks,” IEEE Syst. J., vol. 15, no. 4, pp. 4831–4842, Dec. 2021. doi: 10.1109/JSYST.2020.3020425
|
[20] |
X. H. Ge, Q. L. Han, M. Y. Zhong, and X. M. Zhang, “Distributed Krein space-based attack detection over sensor networks under deception attacks,” Automatica, vol. 109, p. 108557, Nov. 2019.
|
[21] |
J. H. Huang, D. W. C. Ho, F. F. Li, W. Yang, and Y. Tang, “Secure remote state estimation against linear man-in-the-middle attacks using watermarking,” Automatica, vol. 121, p. 109182, Nov. 2020.
|
[22] |
X. M. Zhang, Q. L. Han, X. H. Ge, and L. Ding, “Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3616–3626, Aug. 2020. doi: 10.1109/TCYB.2019.2956137
|
[23] |
W. Y. Xu, D. W. C. Ho, J. Zhong, and B. Chen, “Event/self-triggered control for leader-following consensus over unreliable network with DoS attacks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 10, pp. 3137–3149, Oct. 2019. doi: 10.1109/TNNLS.2018.2890119
|
[24] |
Y. Yu and Y. Yuan, “Event-triggered active disturbance rejection control for nonlinear network control systems subject to DoS and physical attacks,” ISA Trans., vol. 104, pp. 73–83, Sept. 2020. doi: 10.1016/j.isatra.2019.05.004
|
[25] |
H. F. Song, D. R. Ding, H. L. Dong, G. L. Wei, and Q.-L. Han, “Distributed entropy filtering subject to DoS attacks in non-Gauss environments,” Int. J. Robust Nonlinear Control, vol. 30, no. 3, pp. 1240–1257, Feb. 2020. doi: 10.1002/rnc.4818
|
[26] |
W. Y. Xu, G. Q. Hu, D. W. C. Ho, and Z. Feng, “Distributed secure cooperative control under denial-of-service attacks from multiple adversaries,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3458–3467, Aug. 2020. doi: 10.1109/TCYB.2019.2896160
|
[27] |
H. Geng, Z. D. Wang, and Y. H. Cheng, “Distributed federated tobit Kalman filter fusion over a packet-delaying network: A probabilistic perspective,” IEEE Trans. Signal Process., vol. 66, no. 17, pp. 4477–4489, Sept. 2018. doi: 10.1109/TSP.2018.2853098
|
[28] |
H. Lan, Y. Liang, Z. F. Wang, F. Yang, and Q. Pan, “Distributed ECM algorithm for OTHR multipath target tracking with unknown ionospheric heights,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 61–75, Feb. 2018. doi: 10.1109/JSTSP.2017.2787488
|
[29] |
T. C. Li, X. X. Wang, Y. Liang, and Q. Pan, “On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking,” IEEE Trans. Signal Process., vol. 68, pp. 2883–2896, Apr. 2020.
|
[30] |
S. Marir, M. Chadli, and M. V. Basin, “Bounded real lemma for singular linear continuous-time fractional-order systems,” Automatica, vol. 135, p. 109962, Jan. 2022.
|
[31] |
P. Sun, B. Zhu, Z. Y. Zuo, and M. V. Basin, “Vision-based finite-time uncooperative target tracking for UAV subject to actuator saturation,” Automatica, vol. 130, p. 109708, Aug. 2021.
|
[32] |
L. F. Xu, X. R. Li, Z. S. Duan, and J. Lan, “Modeling and state estimation for dynamic systems with linear equality constraints,” IEEE Trans. Signal Process., vol. 61, no. 11, pp. 2927–2939, Jun. 2013. doi: 10.1109/TSP.2013.2255045
|
[33] |
R. Caballero-águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing,” Signal Process., vol. 156, pp. 71–83, Mar. 2019. doi: 10.1016/j.sigpro.2018.10.012
|
[34] |
R. Caballero-águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked fusion estimation with multiple uncertainties and time-correlated channel noise,” Inf. Fusion, vol. 54, pp. 161–171, Feb. 2020. doi: 10.1016/j.inffus.2019.07.008
|
[35] |
D. Ciuonzo, A. Aubry, and V. Carotenuto, “Rician MIMO channel- and jamming-aware decision fusion,” IEEE Trans. Signal Process., vol. 65, no. 15, pp. 3866–3880, Aug. 2017. doi: 10.1109/TSP.2017.2686375
|
[36] |
D. Ciuonzo, V. Carotenuto, and A. De Maio, “On multiple covariance equality testing with application to SAR change detection,” IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5078–5091, Oct. 2017. doi: 10.1109/TSP.2017.2712124
|
[37] |
H. Geng, H. J. Liu, L. F. Ma, and X. J. Yi, “Multi-sensor filtering fusion meets censored measurements under a constrained network environment: Advances, challenges and prospects,” Int. J. Syst. Sci., vol. 52, no. 16, pp. 3410–3436, Nov. 2021. doi: 10.1080/00207721.2021.2005178
|
[38] |
H. J. Fu, H. L. Dong, F. Han, Y. X. Shen, and N. Hou, “Outlier-resistant H∞ filtering for a class of networked systems under Round-Robin protocol,” Neurocomputing, vol. 403, pp. 133–142, Aug. 2020. doi: 10.1016/j.neucom.2020.04.058
|
[39] |
X. R. Li, F. Han, N. Hou, H. L. Dong, and H. J. Liu, “Set-membership filtering for piecewise linear systems with censored measurements under Round-Robin protocol,” Int. J. Syst. Sci., vol. 51, no. 9, pp. 1578–1588, May 2020. doi: 10.1080/00207721.2020.1768453
|
[40] |
J. J. Li, G. L. Wei, D. R. Ding, and E. G. Tian, “Protocol-based H∞ filtering for piecewise linear systems: A measurement-dependent equivalent reduction approach,” Int. J. Robust Nonlinear Control, vol. 31, no. 8, pp. 3163–3178, May 2021. doi: 10.1002/rnc.5445
|
[41] |
H. Geng, Z. D. Wang, L. Zou, A. Mousavi, and Y. H. Cheng, “Protocol-based tobit Kalman filter under integral measurements and probabilistic sensor failures,” IEEE Trans. Signal Process., vol. 69, pp. 546–559, Dec. 2020.
|
[42] |
S. Chen, L. F. Ma, and Y. Q. Ma, “Distributed set-membership filtering for nonlinear systems subject to round-robin protocol and stochastic communication protocol over sensor networks,” Neurocomputing, vol. 385, pp. 13–21, Apr. 2020. doi: 10.1016/j.neucom.2019.11.056
|
[43] |
Y. Y. Dong, Y. Song, and G. L. Wei, “Efficient model-predictive control for networked interval type-2 T-S fuzzy system with stochastic communication protocol,” IEEE Trans. Fuzzy Syst., vol. 29, no. 2, pp. 286–297, Feb. 2021. doi: 10.1109/TFUZZ.2020.3004192
|
[44] |
D. H. Li, J. L. Liang, F. Wang, and X. W. Ren, “Observer-based H∞ control of two-dimensional delayed networks under the random access protocol,” Neurocomputing, vol. 401, pp. 353–363, Aug. 2020. doi: 10.1016/j.neucom.2020.03.044
|
[45] |
K. Q. Zhu, J. Hu, Y. R. Liu, N. D. Alotaibi, and F. E. Alsaadi, “On
|
[46] |
W. H. Song, Z. D. Wang, J. N. Wang, F. E. Alsaadi, and J. Y. Shan, “Secure particle filtering for cyber-physical systems with binary sensors under multiple attacks,” IEEE Syst. J., vol. 16, no. 1, pp. 603–613, Mar. 2022. doi: 10.1109/JSYST.2021.3064920
|
[47] |
N. A. Carlson, “Federated square root filter for decentralized parallel processors,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 517–525, May 1990. doi: 10.1109/7.106130
|
[48] |
Y. Theodor and U. Shaked, “Robust discrete-time minimum-variance filtering,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 181–189, Feb. 1996. doi: 10.1109/78.485915
|