IEEE/CAA Journal of Automatica Sinica
Citation:  H. F. Min, S. Y. Xu, B. Y. Zhang, Q. Ma, and D. M. Yuan, “Fixedtime Lyapunov criteria and statefeedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, Jun. 2022. doi: 10.1109/JAS.2022.105539 
[1] 
M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, Nonlinear and Adaptive Control Design, New York: Wiley, 1995.

[2] 
W. Lin and C. J. Qian, “Adding one power integrator: A tool for global stabilization of highorder lower triangular systems,” Syst. Control Lett., vol. 39, no. 5, pp. 339–351, 2000. doi: 10.1016/S01676911(99)001152

[3] 
H. K. Khalil. Nonlinear Systems. PrenticeHall, New Jersey, 1996.

[4] 
C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2090–2099, 2008. doi: 10.1109/TAC.2008.929402

[5] 
J. X. Zhang and G. H. Yang, “Prescribed performance faulttolerant control of uncertain nonlinear systems with unknown control directions,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6529–6535, 2017. doi: 10.1109/TAC.2017.2705033

[6] 
J. X. Zhang and G. H. Yang, “Lowcomplexity tracking control of strictfeedback systems with unknown control directions,” IEEE Trans. Autom. Control, vol. 64, no. 12, pp. 5175–5182, 2019. doi: 10.1109/TAC.2019.2910738

[7] 
A. K. Jain and S. Bhasin, “Tracking control of uncertain nonlinear systems with unknown constant input delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 420–425, 2020. doi: 10.1109/JAS.2019.1911807

[8] 
C. J. Qian, “A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems,” in Proc. American Control Conf., USA, 2005, pp. 4708–715.

[9] 
X. Q. Huang, W. Lin, and B. Yang, “Global finitetime stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, no. 5, pp. 881–888, 2005. doi: 10.1016/j.automatica.2004.11.036

[10] 
L. Liu, T. Gao, Y. J. Liu, and S. Tong, “Timevarying asymmetrical BLFs based adaptive finitetime neural control of nonlinear systems with full state constraints,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1335–1343, 2020.

[11] 
H. Deng and M. Krstić, “Stochastic nonlinear stabilization, part I: A backstepping design,” Syst. Control Lett., vol. 32, no. 3, pp. 143–150, 1997. doi: 10.1016/S01676911(97)000686

[12] 
R. Z. Has’minskii, Stochastic Stability of Diffrential Equations. Norwell, MA: Kluwer Academic Publishers, 1980.

[13] 
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications (6th ed.). New York, Springer, 2010.

[14] 
X. R. Mao, Stochastic Differential Equations and Their Applications, Chichester: Horwood Publishing, 2007.

[15] 
H. Deng, M. Krstić, and R. J. Williams, “Stabilization of stochastic nonlinear systems driven by noise of unknown covariance,” IEEE Trans. Autom. Control, vol. 46, no. 8, pp. 1237–1253, 2001. doi: 10.1109/9.940927

[16] 
H. Min, S. Xu, B. Zhang, and Q. Ma, “Outputfeedback control for stochastic nonlinear systems subject to input saturation and timevarying delay,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 359–364, 2019. doi: 10.1109/TAC.2018.2828084

[17] 
X. J. Xie, N. Duan, and C. R. Zhao, “A combined homogeneous domination and sign function approach to output feedback stabilization of stochastic highorder nonlinear systems,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1303–1309, 2014. doi: 10.1109/TAC.2013.2286912

[18] 
H. Min and N. Duan, “Neural networkbased adaptive statefeedback control for highorder stochastic nonlinear systems,” Acta Autom. Sin., vol. 40, no. 12, pp. 2976–2980, 2014.

[19] 
X. J. Xie and M. Jiang, “Dynamic state feedback stabilization of stochastic cascade nonlinear timedelay systems with SISS inverse dynamics,” IEEE Trans. Autom. Control, vol. 64, no. 12, pp. 5132–5139, 2019. doi: 10.1109/TAC.2019.2910166

[20] 
X. Fu, Y. Kang, and P. Li, “Sampleddata observer design for a class of stochastic nonlinear systems based on the approximate discretetime models,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 507–511, 2017. doi: 10.1109/JAS.2017.7510559

[21] 
W. Li, X. Yao, and M. Krstić, “Adaptivegain observerbased stabilization of stochastic strictfeedback systems with sensor uncertainty,” Automatica, vol. 120, pp. 109–112, 2020.

[22] 
S. Liu, S. Ge, and J. Zhang, “Adaptive outputfeedback control for a class of uncertain stochastic nonlinear systems with time delays,” Int. J. Control, vol. 81, no. 8, pp. 1210–1220, 2008. doi: 10.1080/00207170701598478

[23] 
T. Jiao, W. X. Zheng, and S. Xu, “Unified stability criteria of random nonlinear timevarying impulsive switched systems,” IEEE Trans. Circuits Syst. I., vol. 67, no. 9, pp. 3099–2112, 2020. doi: 10.1109/TCSI.2020.2983324

[24] 
M. Wang, Z. Wang, Y. Chen, et al., “Eventbased adaptive neural tracking control for discretetime stochastic nonlinear systems: A triggering threshold compensation strategy,” IEEE Trans. Neural Netw. Learning Syst., vol. 31, no. 6, pp. 1968–1981, 2019.

[25] 
W. Sun, S. F. Su, G. Dong, and W. Bai, “Reduced adaptive fuzzy tracking control for highorder stochastic nonstrict feedback nonlinear system with fullstate constraints,” IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2019.2898204, 2019.

[26] 
W. S. Chen and L. C. Jiao, “Finitetime stability theorem of stochastic nonlinear systems,” Automatica, vol. 46, pp. 2105–2108, 2010. doi: 10.1016/j.automatica.2010.08.009

[27] 
J. Yin and S. Khoo, “Correspondence: Comments on finitetime stability theorem of stochastic nonlinear systems [Automatica 46 (2010) 2105–2108],” Automatica, vol. 47, no. 7, pp. 1542–1543, 2011. doi: 10.1016/j.automatica.2011.02.052

[28] 
W. S. Chen and L. C. Jiao, “Correspondence: Authors’ reply to comments on finitetime stability theorem of stochastic nonlinear systems [Automatica 46 (2010) 2105–2108],” Automatica, vol. 47, pp. 1544–1545, 2011. doi: 10.1016/j.automatica.2011.02.053

[29] 
J. Yin, S. Khoo, Z. Man, and X. Yu, “Finitetime stability and instability of stochastic nonlinear systems,” Automatica, vol. 47, no. 12, pp. 2671–2677, 2011. doi: 10.1016/j.automatica.2011.08.050

[30] 
S. Y. Khoo, J. L. Yin, Z. H. Man, and X. H. Yu, “Finitetime stabilization of stochastic nonlinear systems in strict feedback form,” Automatica, vol. 49, no. 5, pp. 1403–1410, 2013. doi: 10.1016/j.automatica.2013.01.054

[31] 
J. L. Yin and S. Y. Khoo, “Continuous finitetime state feedback stabilizers for some nonlinear stochastic systems,” Int. J. Robust Nonlinear Control, vol. 25, no. 11, pp. 1581–1600, 2015. doi: 10.1002/rnc.3161

[32] 
H. Min, S. Xu, Y. Li, Y. Chu, Y. Wei, and Z. Zhang, “Adaptive finitetime control for stochastic nonlinear systems subject to unknown covariance noise,” J. Franklin Institute, vol. 355, pp. 2645–2661, 2018. doi: 10.1016/j.jfranklin.2018.02.003

[33] 
W. T. Zha, J. Y. Zhai, S. M. Fei, and Y. J. Wang, “Finitetime stabilization for a class of stochastic nonlinear systems via output feedback,” ISA Trans., vol. 53, no. 3, pp. 709–716, 2014. doi: 10.1016/j.isatra.2014.01.005

[34] 
S. P. Huang and Z. R. Xiang, “Finitetime stabilization of a class of switched stochastic nonlinear systems under arbitrary switching,” Int. J. Robust Nonlin. Control, vol. 26, no. 10, pp. 2136–2152, 2016. doi: 10.1002/rnc.3398

[35] 
M. M. Jiang, X. J. Xie, and K. Zhang, “Finitetime stabilization of stochastic highorder nonlinear systems with FTSISS inverse dynamics,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 313–320, 2019. doi: 10.1109/TAC.2018.2827993

[36] 
X. Yu, J., J. L. Yin, and S.Y. Khoo, “Generalized Lyapunov criteria on finitetime stability of stochastic nonlinear systems,” Automatica, vol. 107, pp. 183–189, 2019. doi: 10.1016/j.automatica.2019.05.048

[37] 
H. Min, S. Xu, and Z. Zhang, “Adaptive finitetime stabilization of stochastic nonlinear systems subject to fullstate constraints and input saturation,” IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1306–1313, 2021. doi: 10.1109/TAC.2020.2990173

[38] 
A. Polyakov, “Nonlinear feedback design for fixedtime stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2012. doi: 10.1109/TAC.2011.2179869

[39] 
Z. Zuo, “Nonsingular fixedtime terminal sliding mode control of nonlinear systems,” IET Control Theory Appl., vol. 9, no. 4, pp. 545–552, 2015. doi: 10.1049/ietcta.2014.0202

[40] 
S. Shi, J. Gu, S. Xu, and H. Min, “Globally fixedtime highorder sliding mode control for new sliding mode systems subject to mismatched terms and its application,” IEEE Trans. Industrial Electron., vol. 67, no. 12, pp. 10776–10786, 2020. doi: 10.1109/TIE.2019.2959482

[41] 
C. Hu, J. Yu, Z. Chen, H. Jiang, and T. Huang, “Fixedtime stability of dynamical systems and fixedtime synchronization of coupled discontinuous neural networks,” Neural Netw., vol. 89, pp. 74–83, 2017. doi: 10.1016/j.neunet.2017.02.001

[42] 
H. Yao and D. Ye, “Fixedtime stabilization of uncertain strictfeedback nonlinear systems via a bilimitlike strategy,” Int. J. Robust Nonlin. Control, vol. 28, no. 17, pp. 5531–5544, 2018. doi: 10.1002/rnc.4328

[43] 
C. Hua, P. Ning, K. Li, and X. Guan, “Fixedtime prescribed tracking control for stochastic nonlinear systems with unknown measurement sensitivity,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.3012560

[44] 
J. Yu, S. Yu, J. Li, and Y. Yan, “Fixedtime stability theorem of stochastic nonlinear systems,” Int. J. Control, vol. 92, no. 9, pp. 2194–2220, 2019. doi: 10.1080/00207179.2018.1430900

[45] 
Z. Song, P. Li, J. Zhai, Z. Wang, and X. Huang, “Global fixedtime stabilization for switched stochastic nonlinear systems under rational switching powers,” Appl. Math. Comput., vol. 387, 2020. doi: 10.1016/j.amc.2019.124856

[46] 
Y. Liang, Y. X. Li, and Z. Hou, “Adaptive fixedtime tracking control for stochastic purefeedback nonlinear systems,” Int. J. Adaptive Control Signal Processing, 2021. DOI: 10.1002/acs.3285

[47] 
K. Li, Y. M. Li, and G. Zong, “Adaptive fuzzy fixedtime decentralized control for stochastic nonlinear systems,” IEEE Trans. Fuzzy Syst., 2020. DOI: 10.1109/TFUZZ.2020.3022570
