A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 9
Sep.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
M. J. Hu, L. K. Bu, Y. G. Bian, H. M. Qin, N. Sun, D. P. Cao, and Z. H. Zhong, “Hierarchical cooperative control of connected vehicles: From heterogeneous parameters to heterogeneous structures,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1590–1602, Sept. 2022. doi: 10.1109/JAS.2022.105536
Citation: M. J. Hu, L. K. Bu, Y. G. Bian, H. M. Qin, N. Sun, D. P. Cao, and Z. H. Zhong, “Hierarchical cooperative control of connected vehicles: From heterogeneous parameters to heterogeneous structures,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1590–1602, Sept. 2022. doi: 10.1109/JAS.2022.105536

Hierarchical Cooperative Control of Connected Vehicles: From Heterogeneous Parameters to Heterogeneous Structures

doi: 10.1109/JAS.2022.105536
Funds:  This work was supported by the National Key Research and Development Program of China (2021YFB2501803), the National Natural Science Foundation of China (52172384, 52002126, 52102394), Hunan Provincial Natural Science Foundation of China (2021JJ40065), the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (61775006), and the Fundamental Research Funds for the Central Universities
More Information
  • As one of the typical applications of connected vehicles (CVs), the vehicle platoon control technique has been proven to have the advantages of reducing emissions, improving traffic throughout and driving safety. In this paper, a unified hierarchical framework is designed for cooperative control of CVs with both heterogeneous model parameters and structures. By separating neighboring information interaction from local dynamics control, the proposed framework is designed to contain an upper-level observing layer and a lower-level tracking control layer, which helps address the heterogeneity in vehicle parameters and structures. Within the proposed framework, an observer is designed for following vehicles to observe the leading vehicle’s states using neighboring communication, while a tracking controller is designed to track the observed leading vehicle using local feedback control. Closed-loop stability in the absence and presence of communication time delay is analyzed, and the observer is further extended to a finite time convergent one to address string stability under general communication topology. Numerical simulation and field experiment verify the effectiveness of the proposed method.

     

  • loading
  • [1]
    A. Talebpour and H. S. Mahmassani, “Influence of connected and autonomous vehicles on traffic flow stability and throughput,” Trans. Res. Part C Emerg. Technol., vol. 71, pp. 143–163, Oct. 2016. doi: 10.1016/j.trc.2016.07.007
    [2]
    B. Xu, X. J. Ban, Y. G. Bian, W. Li, J. Q. Wang, S. E. Li, and K. Q. Li, “Cooperative method of traffic signal optimization and speed control of connected vehicles at isolated intersections,” IEEE Trans. Intell. Transport. Syst., vol. 20, no. 4, pp. 1390–1403, Apr. 2019. doi: 10.1109/TITS.2018.2849029
    [3]
    K. Y. Liang, J. Mårtensson, and K. H. Johansson, “Heavy-duty vehicle platoon formation for fuel efficiency,” IEEE Trans. Intell. Transport. Syst., vol. 17, no. 4, pp. 1051–1061, Apr. 2016. doi: 10.1109/TITS.2015.2492243
    [4]
    Y. G. Bian, Y. Zheng, W. Ren, S. E. Li, J. Q. Wang, and K. Q. Li, “Reducing time headway for platooning of connected vehicles via V2V communication,” Transport. Res. Part C Emerg. Technol., vol. 102, pp. 87–105, May 2019. doi: 10.1016/j.trc.2019.03.002
    [5]
    S. E. Shladover, C. A. Desoer, J. K. Hedrick, M. Tomizuka, J. Walrand, W. B. Zhang, D. H. McMahon, H. Peng, S. Sheikholeslam, and N. McKeown, “Automated vehicle control developments in the PATH program,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 114–130, Feb. 1991. doi: 10.1109/25.69979
    [6]
    S. E. Shladover, “PATH at 20 — history and major milestones,” IEEE Trans. Intell. Transport. Syst., vol. 8, no. 4, pp. 584–592, Dec. 2007. doi: 10.1109/TITS.2007.903052
    [7]
    Z. R. Wang, Y. G. Bian, S. E. Shladover, G. Y. Wu, S. E. Li, and M. J. Barth, “A survey on cooperative longitudinal motion control of multiple connected and automated vehicles,” IEEE Intell. Transport. Syst. Mag., vol. 12, no. 1, pp. 4–24, 2020. doi: 10.1109/MITS.2019.2953562
    [8]
    Y. G. Bian, S. E. Li, W. Ren, J. Q. Wang, K. Q. Li, and H. X. Liu, “Cooperation of multiple connected vehicles at unsignalized intersections: Distributed observation, optimization, and control,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10744–10754, Dec. 2020. doi: 10.1109/TIE.2019.2960757
    [9]
    Y. Zheng, S. E. Li, J. Q. Wang, D. P. Cao, and K. Q. Li, “Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies,” IEEE Trans. Intell. Transport. Syst., vol. 17, no. 1, pp. 14–26, Jan. 2016. doi: 10.1109/TITS.2015.2402153
    [10]
    S. E. Li, X. H. Qin, Y. Zheng, J. Q. Wang, K. Q. Li, and H. W. Zhang, “Distributed platoon control under topologies with complex eigenvalues: Stability analysis and controller synthesis,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 206–220, Jan. 2019. doi: 10.1109/TCST.2017.2768041
    [11]
    Y. Zheng, Y. G. Bian, S. Li, and S. E. Li, “Cooperative control of heterogeneous connected vehicles with directed acyclic interactions,” IEEE Intell. Transport. Syst. Mag., vol. 13, no. 2, pp. 127–141, 2021. doi: 10.1109/MITS.2018.2889654
    [12]
    Z. T. Li, L. X. Gao, W. H. Chen, and Y. Xu, “Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 292–300, Jan. 2020. doi: 10.1109/JAS.2019.1911858
    [13]
    A. Ghasemi, R. Kazemi, and S. Azadi, “Stable decentralized control of a platoon of vehicles with heterogeneous information feedback,” IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4299–4308, Nov. 2013. doi: 10.1109/TVT.2013.2253500
    [14]
    Y. F. Li, W. B. Chen, S. Peeta, and Y. B. Wang, “Platoon control of connected multi-vehicle systems under V2X communications: Design and experiments,” IEEE Transa. Intell. Transport. Syst., vol. 21, no. 5, pp. 1891–1902, May 2020. doi: 10.1109/TITS.2019.2905039
    [15]
    Y. F. Li, C. C. Tang, S. Peeta, and Y. B. Wang, “Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays,” IEEE Trans. Intell. Transport. Syst., vol. 20, no. 6, pp. 2209–2219, Jun. 2019. doi: 10.1109/TITS.2018.2865546
    [16]
    A. L. Yang, W. Naeem, and M. R. Fei, “Decentralised formation control and stability analysis for multi-vehicle cooperative manoeuvre,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 92–100, Jan. 2014. doi: 10.1109/JAS.2014.7004625
    [17]
    C. Y. Zu, C. Yang, J. Wang, W. B. Gao, D. P. Cao, and F.-Y. Wang, “Simulation and field testing of multiple vehicles collision avoidance algorithms,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1045–1063, Jul. 2020. doi: 10.1109/JAS.2020.1003246
    [18]
    W. N. Gao, Z. P. Jiang, and K. Ozbay, “Data-driven adaptive optimal control of connected vehicles,” IEEE Trans. Intell. Transport. Syst., vol. 18, no. 5, pp. 1122–1133, May 2017. doi: 10.1109/TITS.2016.2597279
    [19]
    W. N. Gao and Z. P. Jiang, “Nonlinear and adaptive suboptimal control of connected vehicles: A global adaptive dynamic programming approach,” J. Intell. Rob. Syst., vol. 85, no. 3, pp. 597–611, 2017.
    [20]
    X. Y. Chen, J. Yang, C. J. Zhai, J. D. Lou, and C. G. Yan, “Economic adaptive cruise control for electric vehicles based on ADHDP in a car-following scenario,” IEEE Access, vol. 9, pp. 74949–74958, 2021. doi: 10.1109/ACCESS.2021.3081184
    [21]
    M. Di Bernardo, A. Salvi, and S. Santini, “Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays,” IEEE Trans. Intell. Transport. Syst., vol. 16, no. 1, pp. 102–112, Feb. 2015. doi: 10.1109/TITS.2014.2328439
    [22]
    C. Q. Wu, Y. F. Li, and Y. Y. Li, “Trajectory tracking control for connected vehicle platoon considering time delays,” in Proc. Chinese Automation Congr., Xi’an, China, 2018, pp. 1328−1333.
    [23]
    J. I. Ge and G. Orosz, “Optimal control of connected vehicle systems with communication delay and driver reaction time,” IEEE Trans. Intell. Transport. Syst., vol. 18, no. 8, pp. 2056–2070, Aug. 2017. doi: 10.1109/TITS.2016.2633164
    [24]
    F. Gao, S. E. Li, Y. Zheng, and D. Kum, “Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay,” IET Intell. Transport Syst., vol. 10, no. 7, pp. 503–513, Sept. 2016. doi: 10.1049/iet-its.2015.0205
    [25]
    A. Elahi, A. Alfi, and H. Modares, “H consensus control of discrete-time multi-agent systems under network imperfections and external disturbance,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 667–675, May 2019. doi: 10.1109/JAS.2019.1911474
    [26]
    E. Shaw and J. K. Hedrick, “String stability analysis for heterogeneous vehicle strings,” in Proc. American Control Conf., New York, USA, 2007, pp. 3118−3125.
    [27]
    S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annu. Rev. Control, vol. 47, pp. 81–97, Jan. 2019. doi: 10.1016/j.arcontrol.2019.03.001
    [28]
    G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. Van De Molengraft, and M. Steinbuch, “String-stable CACC design and experimental validation: A frequency-domain approach,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4268–4279, Nov. 2010. doi: 10.1109/TVT.2010.2076320
    [29]
    D. Swaroop and J. K. Hedrick, “String stability of interconnected systems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 349–357, Mar. 1996. doi: 10.1109/9.486636
    [30]
    P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle strings,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1835–1842, Oct. 2004. doi: 10.1109/TAC.2004.835586
    [31]
    M. D. Ankem and S. Darbha, “Effect of heterogeneity in time headway on error propagation in vehicular strings,” in Proc. IEEE Intelligent Transportation Systems Conf., Auckland, New Zealand, 2019, pp. 2612−2619.
    [32]
    A. Duret, M. Wang, and A. Ladino, “A hierarchical approach for splitting truck platoons near network discontinuities,” Transport. Res. Part B Methodol., vol. 132, pp. 285–302, 2020. doi: 10.1016/j.trb.2019.04.006
    [33]
    N. Chen, B. Van Arem, T. Alkim, and M. Wang, “A hierarchical model-based optimization control approach for cooperative merging by connected automated vehicles,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 12, pp. 7712–7725, Dec. 2021. doi: 10.1109/TITS.2020.3007647
    [34]
    G. Guo and W. Yue, “Hierarchical platoon control with heterogeneous information feedback,” IET Control Theory Appl., vol. 5, no. 15, pp. 1766–1781, Oct. 2011. doi: 10.1049/iet-cta.2010.0765
    [35]
    H. A. Izadi, B. W. Gordon, and Y. M. Zhang, “Hierarchical decentralized receding horizon control of multiple vehicles with communication failures,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2, pp. 744–759, Apr. 2013. doi: 10.1109/TAES.2013.6494378
    [36]
    I. Tejado, V. Milanés, J. Villagrá, and B. M. Vinagre, “Fractional network-based control for vehicle speed adaptation via vehicle-to-infrastructure communications,” IEEE Trans. Control Syst. Technol., vol. 21, no. 3, pp. 780–790, May 2013. doi: 10.1109/TCST.2012.2195494
    [37]
    V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, “Cooperative adaptive cruise control in real traffic situations,” IEEE Trans. Intell. Transport. Syst., vol. 15, no. 1, pp. 296–305, Feb. 2014. doi: 10.1109/TITS.2013.2278494
    [38]
    Y. G. Bian, X. H. Qin, C. K. Du, B. Xu, Z. Y. Yang, and M. J. Hu, “A unified hierarchical framework for platoon control of connected vehicles with heterogeneous control modes,” in Proc. IEEE 23rd Int. Conf. Intelligent Transportation Systems, Rhodes, Greece, 2020, pp. 1−6.
    [39]
    F. Gao, X. S. Hu, S. E. Li, K. Q. Li, and Q. Sun, “Distributed adaptive sliding mode control of vehicular platoon with uncertain interaction topology,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6352–6361, Aug. 2018. doi: 10.1109/TIE.2017.2787574
    [40]
    C. K. Du, Y. G. Bian, H. K. Liu, W. Ren, P. L. Lu, and X. D. Liu, “Cooperative startup control for heterogeneous vehicle platoons: A finite-time output tracking-based approach,” IEEE Trans. Control Netw. Syst., vol. 8, no. 4, pp. 1767–1777, Dec. 2021. doi: 10.1109/TCNS.2021.3084463
    [41]
    Q. Jiao, H. Modares, F. L. Lewis, S. Y. Xu, and L. H. Xie, “Distributed L2-Gain output-feedback control of homogeneous and heterogeneous systems,” Automatica, vol. 71, pp. 361–368, Sept. 2016. doi: 10.1016/j.automatica.2016.04.025
    [42]
    X. D. Liu, H. K. Liu, C. K. Du, P. L. Lu, and W. N. Gao, “Event-triggered output consensus for heterogeneous multiagent systems with fixed and switching directed topologies,” Int. J. Robust Nonlinear Control, vol. 29, no. 14, pp. 4681–4699, Jul. 2019. doi: 10.1002/rnc.4647
    [43]
    J. R. Zhang, C. R. Knospe, and P. Tsiotras, “New results for the analysis of linear systems with time-invariant delays,” Int. J. Robust Nonlinear Control, vol. 13, no. 12, pp. 1149–1175, Oct. 2003. doi: 10.1002/rnc.834
    [44]
    Z. Y. Zuo, B. L. Tian, M. Defoort, and Z. T. Ding, “Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 563–570, Feb. 2018. doi: 10.1109/TAC.2017.2729502
    [45]
    J. M. Wang, X. Y. Luo, L. Wang, Z. Q. Zuo, and X. P. Guan, “Integral sliding mode control using a disturbance observer for vehicle platoons,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6639–6648, Aug. 2020. doi: 10.1109/TIE.2019.2936990
    [46]
    X. L. Song, L. Chen, K. Wang, and D. F. He, “Robust time-delay feedback control of vehicular CACC systems with uncertain dynamics,” Sensors, vol. 20, no. 6, p. 1775, Mar. 2020.
    [47]
    J. Huang, Y. M. Chen, X. Y. Peng, L. Hu, and D. P. Cao, “Study on the driving style adaptive vehicle longitudinal control strategy,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1107–1115, Jul. 2020. doi: 10.1109/JAS.2020.1003261

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (685) PDF downloads(146) Cited by()

    Highlights

    • A hierarchical framework is proposed for cooperative control of connected vehicles
    • Both model parametric and structural heterogeneity are considered in the framework
    • An asymptotic stability criterion is derived in the presence of time delay
    • String stability is guaranteed for the heterogeneous vehicle platoon

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return