IEEE/CAA Journal of Automatica Sinica
Citation: | S. R. Nekoo, J. Á. Acosta, G. Heredia, and A. Ollero, “A PD-type state-dependent Riccati equation with iterative learning augmentation for mechanical systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1499–1511, Aug. 2022. doi: 10.1109/JAS.2022.105533 |
[1] |
T. Cimen, “Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis,” Journal of Guidance,Control,and Dynamics, vol. 35, pp. 1025–1047, 2012. doi: 10.2514/1.55821
|
[2] |
T. Cimen and S. P. Banks, “Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria,” Systems &Control Letters, vol. 53, pp. 327–346, 2004.
|
[3] |
L. Felicetti and G. B. Palmerini, “A comparison among classical and SDRE techniques in formation flying orbital control,” in Proc. IEEE Aerospace Conf., Big Sky, Montana, 2013, pp. 1–12.
|
[4] |
A. Heydari and S. N. Balakrishnan, “Fixed-final-time optimal tracking control of input-affine nonlinear systems,” Neurocomputing, vol. 129, pp. 528–539, 2014. doi: 10.1016/j.neucom.2013.09.006
|
[5] |
A. Hamdache, S. Saadi, and I. Elmouki, “Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer,” Int. Journal of Dynamics and Control, vol. 4, pp. 346–361, 2016. doi: 10.1007/s40435-015-0205-y
|
[6] |
S.-R. Oh, Z. Bien, and I. H. Suh, “An iterative learning control method with application to robot manipulators,” IEEE Journal on Robotics and Automation, vol. 4, pp. 508–514, 1988. doi: 10.1109/56.20435
|
[7] |
H.-S. Ahn, Y.-Q. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE Trans. Systems,Man,and Cybernetics,Part C (Applications and Reviews)
|
[8] |
D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Control Systems Magazine, vol. 26, pp. 96–114, 2006. doi: 10.1109/MCS.2006.1636313
|
[9] |
Q. Zhu, F. Song, J.-X. Xu, and Y. Liu, “An internal model based iterative learning control for wafer scanner systems,” IEEE/ASME Trans. Mechatronics, vol. 24, pp. 2073–2084, 2019. doi: 10.1109/TMECH.2019.2929565
|
[10] |
D. Shen, “Iterative learning control with incomplete information: A survey,” IEEE/CAA J. Autom. Sinica, vol. 5, pp. 885–901, 2018. doi: 10.1109/JAS.2018.7511123
|
[11] |
J. Zhang, B. Cui, X. Dai, and Z. Jiang, “Iterative learning control for distributed parameter systems based on non-collocated sensors and actuators,” IEEE/CAA J. Autom. Sinica, vol. 7, pp. 865–871, 2019.
|
[12] |
J. Wei, Y. Zhang, and H. Bao, “An exploration on adaptive iterative learning control for a class of commensurate high-order uncertain nonlinear fractional order systems,” IEEE/CAA J. Autom. Sinica, vol. 5, pp. 618–627, 2017.
|
[13] |
W. He, T. Meng, X. He, and C. Sun, “Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances,” IEEE Trans. Cybernetics, vol. 49, pp. 1524–1535, 2018.
|
[14] |
Y. Jian, D. Huang, J. Liu, and D. Min, “High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis,” IEEE Trans. Industrial Electronics, vol. 66, pp. 368–377, 2018.
|
[15] |
D. Shen and J.-X. Xu, “Adaptive learning control for nonlinear systems with randomly varying iteration lengths,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, pp. 1119–1132, 2018.
|
[16] |
L. Roveda, G. Pallucca, N. Pedrocchi, F. Braghin, and L. M. Tosatti, “Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks,” IEEE Trans. Industrial Informatics, vol. 14, pp. 1753–1763, 2018. doi: 10.1109/TII.2017.2748236
|
[17] |
S.-K. Oh, B. J. Park, and J. M. Lee, “Point-to-point iterative learning model predictive control,” Automatica, vol. 89, pp. 135–143, 2018. doi: 10.1016/j.automatica.2017.11.010
|
[18] |
Y. Pan and H. Yu, “Composite learning robot control with guaranteed parameter convergence,” Automatica, vol. 89, pp. 398–406, 2018. doi: 10.1016/j.automatica.2017.11.032
|
[19] |
A. Schöllig and R. D’Andrea, “Optimization-based iterative learning control for trajectory tracking,” in Proc. European Control Conf., Budapest, Hungary, 2009, pp. 1505–1510.
|
[20] |
M. Ohnishi, L. Wang, G. Notomista, and M. Egerstedt, “Barrier-certified adaptive reinforcement learning with applications to brushbot navigation,” IEEE Trans. Robotics, vol. 35, pp. 1186–1205, 2019. doi: 10.1109/TRO.2019.2920206
|
[21] |
A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza, “Deep drone racing: From simulation to reality with domain randomization,” IEEE Trans. Robotics, vol. 36, pp. 1–14, 2020. doi: 10.1109/TRO.2019.2942989
|
[22] |
H. Pan, X. Niu, R.-C. Li, Y. Dou, and H. Jiang, “Annealed gradient descent for deep learning,” Neurocomputing, vol. 380, pp. 201–211, 2020. doi: 10.1016/j.neucom.2019.11.021
|
[23] |
T.-Y. Kuc, K. Nam, and J. S. Lee, “An iterative learning control of robot manipulators,” IEEE Trans. Robotics and Automation, vol. 7, pp. 835–842, 1991. doi: 10.1109/70.105392
|
[24] |
M. Sun and D. Wang, “Closed-loop iterative learning control for non-linear systems with initial shifts,” Int. Journal of Adaptive Control and Signal Processing, vol. 16, pp. 515–538, 2002. doi: 10.1002/acs.707
|
[25] |
C.-W. Chen, S. Rai, and T.-C. Tsao, “Iterative learning of dynamic inverse filters for feedforward tracking control,” IEEE/ASME Trans. Mechatronics, vol. 25, pp. 349–359, 2019.
|
[26] |
A. P. Schoellig, F. L. Mueller, and R. D’Andrea, “Optimization-based iterative learning for precise quadrocopter trajectory tracking,” Autonomous Robots, vol. 33, pp. 103–127, 2012. doi: 10.1007/s10514-012-9283-2
|
[27] |
D. Meng and J. Zhang, “Robust optimization-based iterative learning control for nonlinear systems with nonrepetitive uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 8, pp. 1001–1014, 2021. doi: 10.1109/JAS.2021.1003973
|
[28] |
D. Meng and J. Zhang, “Design and analysis of data-driven learning control: An optimization-based approach,” IEEE Trans. Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS.2021.3070920
|
[29] |
D. Meng and J. Zhang, “Robust tracking of nonrepetitive learning control systems with iteration-dependent references,” IEEE Trans. Systems,Man,and Cybernetics: Systems, 2018. DOI: 10.1109/TSMC.2018.2883383
|
[30] |
R. Kelly and R. Carelli, “A class of nonlinear PD-type controllers for robot manipulators,” Journal of Robotic Systems, vol. 13, pp. 793–802, 1996. doi: 10.1002/(SICI)1097-4563(199612)13:12<793::AID-ROB2>3.0.CO;2-Q
|
[31] |
J. Alvarez-Ramirez, R. Kelly, and I. Cervantes, “Semiglobal stability of saturated linear PID control for robot manipulators,” Automatica, vol. 39, pp. 989–995, 2003. doi: 10.1016/S0005-1098(03)00035-9
|
[32] |
S. R. Nekoo, J. Á. Acosta, G. Heredia, and A. Ollero, “A benchmark mechatronics platform to assess the inspection around pipes with variable pitch quadrotor for industrial sites,” Mechatronics, vol. 79, p. 102641, 2021.
|
[33] |
M. H. Korayem and S. R. Nekoo, “Finite-time state-dependent Riccati equation for time-varying nonaffine systems: Rigid and flexible joint manipulator control,” ISA Transactions, vol. 54, pp. 125–144, 2015. doi: 10.1016/j.isatra.2014.06.006
|
[34] |
T. Cimen, “State-dependent Riccati equation (SDRE) control: A survey,” IFAC Proceedings Volumes, vol. 41, pp. 3761–3775, Jul. 2008. doi: 10.3182/20080706-5-KR-1001.00635
|
[35] |
S. R. Nekoo, “Tutorial and review on the state-dependent Riccati equation,” Journal of Applied Nonlinear Dynamics, vol. 8, pp. 109–166, 2019. doi: 10.5890/JAND.2019.06.001
|
[36] |
Y. Batmani, M. Davoodi, and N. Meskin, “On design of suboptimal tracking controller for a class of nonlinear systems,” in Proc. American Control Conf., Boston, MA, USA, 2016, pp. 1094–1098.
|
[37] |
A. Ghaffari, M. Nazari, and F. Arab, “Suboptimal mixed vaccine and chemotherapy in finite duration cancer treatment: State-dependent Riccati equation control,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 37, pp. 45–56, 2015. doi: 10.1007/s40430-014-0172-9
|
[38] |
A. Wernli and G. Cook, “Suboptimal control for the nonlinear quadratic regulator problem,” Automatica, vol. 11, pp. 75–84, 1975. doi: 10.1016/0005-1098(75)90010-2
|
[39] |
S. R. Nekoo, J. Á. Acosta, and A. Ollero, “Gravity compensation and optimal control of actuated multibody system dynamics,” IET Control Theory &Applications, vol. 16, pp. 79–93, 2021.
|
[40] |
M. H. Korayem, A. Nikoobin, and V. Azimirad, “Maximum load carrying capacity of mobile manipulators: Optimal control approach,” Robotica, vol. 27, pp. 147–159, 2009. doi: 10.1017/S0263574708004578
|
[41] |
D. E. Kirk, Optimal Control Theory: An Introduction: Courier Corporation, 2012.
|
[42] |
T. Çimen and S. P. Banks, “Nonlinear optimal tracking control with application to super-tankers for autopilot design,” Automatica, vol. 40, pp. 1845–1863, 2004. doi: 10.1016/j.automatica.2004.05.015
|
[43] |
A. Prach, O. Tekinalp, and D. Bernstein, “Nonlinear aircraft flight control using the forward propagating Riccati equation,” in Proc. AIAA Guidance, Navigation, and Control Conf., San Diego, California, USA, 2016, pp. 1383–1396.
|
[44] |
A. Khamis, H. M. Nguyen, and D. S. Naidu, “Nonlinear, optimal control of wind energy conversion systems using differential SDRE,” in Resilience Week, Philadelphia, PA, 2015, pp. 1–6.
|
[45] |
B. Geranmehr, E. Khanmirza, and S. Kazemi, “Trajectory control of aggressive maneuver by agile autonomous helicopter,” Proc. the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, p. 0954410018755807, 2018.
|
[46] |
S. R. Nekoo and B. Geranmehr, “Nonlinear observer-based optimal control using the state-dependent Riccati equation for a class of non-affine control systems,” Journal of Control Engineering and Applied Informatics, vol. 16, pp. 5–13, 2014.
|
[47] |
S. R. Nekoo, “Nonlinear closed loop optimal control: A modified state-dependent Riccati equation,” ISA Transactions, vol. 52, pp. 285–290, 2013. doi: 10.1016/j.isatra.2012.10.005
|
[48] |
S. R. Nekoo, “Digital implementation of a continuous-time nonlinear optimal controller: An experimental study with real-time computations,” ISA Transactions, vol. 101, pp. 346–357, 2020. doi: 10.1016/j.isatra.2020.01.020
|
[49] |
M. Xin, S. N. Balakrishnan, and Z. Huang, “Robust state dependent Riccati equation based robot manipulator control,” in Proc. IEEE Int. Conf. Control Applications, Mexico City, Mexico, 2001, pp. 369–374.
|
[50] |
[Online]. Available: https://www.oulu.fi/hyfliers/.
|