IEEE/CAA Journal of Automatica Sinica
Citation: | C. Liu, B. Jiang, X. F. Wang, H. L. Yang, and S. R. Xie, “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, Jun. 2022. doi: 10.1109/JAS.2022.105419 |
[1] |
H. B. Du, Z. Q. Chen, and G. H. Wen, “Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft,” J. Guid. Control Dyn., vol. 39, no. 4, pp. 941–948, 2016.
|
[2] |
Q. S. Wang, D. Huang, Z. S. Duan, and J. Y. Wang, “Consensus tracking control with transient performance improvement for a group of unmanned aerial vehicles subject to faults and parameter uncertainty,” Int. J. Control, vol. 92, no. 4, pp. 796–815, 2019. doi: 10.1080/00207179.2017.1370555
|
[3] |
W. Wang, J. S. Huang, C. Y. Wen, and H. J. Fan, “Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots,” Automatica, vol. 50, no. 4, pp. 1254–1263, 2014. doi: 10.1016/j.automatica.2014.02.028
|
[4] |
J. H. Qin, Q. C. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent systems: A brief survey,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4972–4983, 2017. doi: 10.1109/TIE.2016.2636810
|
[5] |
M. E. Valcher and I. Zorzan, “On the consensus of homogeneous multi-agent systems with arbitrarily switching topology,” Automatica, vol. 84, pp. 79–85, 2017. doi: 10.1016/j.automatica.2017.07.011
|
[6] |
Z. Y. Zuo, B. L. Tian, M. Defoort, and Z. T. Ding, “Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 563–570, 2018. doi: 10.1109/TAC.2017.2729502
|
[7] |
B. Cheng, X. K. Wang, and Z. K. Li, “Event-triggered consensus of homogeneous and heterogeneous multiagent systems with jointly connected switching topologies,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4421–4430, 2019. doi: 10.1109/TCYB.2018.2864974
|
[8] |
M. L. Lv, W. W. Yu, J. D. Cao, and S. Baldi, “A separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., 2021. DOI: 10.1109/TNNLS.2021.3070824
|
[9] |
W. L. He, Z. K. Mo, Q. L. Han, and F. Qian, “Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1326–1334, 2020.
|
[10] |
P. Cheng, Z. Y. Yang, J. M. Chen, et al., “An event-based stealthy attack on remote state estimation,” IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4348–4355, 2020. doi: 10.1109/TAC.2019.2956021
|
[11] |
M. L. Lv, W. W. Yu, J. D. Cao, and S. Baldi, “Consensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based control,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.3028171
|
[12] |
S. Wu, K. M. Ding, P. Cheng, and L. Shi, “Optimal scheduling of multiple sensors over lossy and bandwidth limited channels,” IEEE Trans. Control Netw. Syst., vol. 7, no. 3, pp. 1188–1200, 2020. doi: 10.1109/TCNS.2020.2966671
|
[13] |
D. Ye and X. Yang, “Distributed event-triggered consensus for nonlinear multi-agent systems subject to cyber attacks,” Inf. Sci., vol. 473, pp. 178–189, 2019. doi: 10.1016/j.ins.2018.09.030
|
[14] |
D. R. Ding, Z. D. Wang, D. W. C. Ho, and G. L. Wei, “Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1936–1947, 2017. doi: 10.1109/TCYB.2016.2582802
|
[15] |
K. F. E. Tsang, M. Y. Huang, K. H. Johansson, and L. Shi, “Sparse linear injection attack on multi-agent consensus control systems,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 665–670, 2021. doi: 10.1109/LCSYS.2020.3004920
|
[16] |
D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, 2021. doi: 10.1109/JAS.2021.1003820
|
[17] |
Y. Xu, M. Fang, Z. G. Wu, et al., “Input-based event-triggering consensus of multiagent systems under denial-of-service attacks,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 50, no. 4, pp. 1455–1464, 2020. doi: 10.1109/TSMC.2018.2875250
|
[18] |
W. M. Fu, J. H. Qin, Y. Shi, et al., “Resilient consensus of discrete-time complex cyber-physical networks under deception attacks,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4868–4877, 2020. doi: 10.1109/TII.2019.2933596
|
[19] |
Y. Yang, H. W. Xu, and D. Yue, “Observer-based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 66, no. 8, pp. 3089–3099, 2019. doi: 10.1109/TCSI.2019.2904747
|
[20] |
Z. Feng, G. Q. Hu, and G. H. Wen, “Distributed consensus tracking for multi-agent systems under two types of attacks,” Int. J. Robust Nonlinear Control, vol. 26, no. 5, pp. 896–918, 2016. doi: 10.1002/rnc.3342
|
[21] |
H. Yang, Q. L. Han, X. H. Ge, et al., “Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies,” IEEE Trans. Ind. Inform., vol. 16, no. 1, pp. 4–17, 2020. doi: 10.1109/TII.2019.2945004
|
[22] |
D. Ye, X. G. Zhao, and B. Cao, “Distributed adaptive fault-tolerant consensus tracking of multi-agent systems against time-varying actuator faults,” IET Contr. Theory Appl., vol. 10, no. 5, pp. 554–563, 2016. doi: 10.1049/iet-cta.2015.0790
|
[23] |
Z. Q. Zuo, J. Zhang, and Y. J. Wang, “Adaptive fault-tolerant tracking control for linear and Lipchitz nonlinear multi-agent systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3923–3931, 2015.
|
[24] |
C. Deng, W. N. Gao, and W. W. Che, “Distributed adaptive fault-tolerant output regulation of heterogeneous multi-agent systems with coupling uncertainties and actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1098–1106, 2020. doi: 10.1109/JAS.2020.1003258
|
[25] |
X. Z. Jin, S. F. Wang, J. H. Qin, et al., “Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 65, no. 7, pp. 2243–2255, 2018. doi: 10.1109/TCSI.2017.2782729
|
[26] |
C. Liu, B. Jiang, K. Zhang, and R. J. Patton, “Hierarchical structure-based fault estimation and fault-tolerant control for multiagent systems,” IEEE Trans. Control Netw. Syst., vol. 6, no. 2, pp. 586–597, 2019. doi: 10.1109/TCNS.2018.2860460
|
[27] |
D. Ye, M. M. Chen, and H. J. Yang, “Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 757–767, 2019. doi: 10.1109/TCYB.2017.2782731
|
[28] |
X. Wang and G. H. Yang, “Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1921–1930, 2020. doi: 10.1109/TCYB.2019.2901542
|
[29] |
Y. M. Wu, Z. S. Wang, S. B. Ding, and H. G. Zhang, “Leader-follower consensus of multi-agent systems in directed networks with actuator faults,” Neurocomputing, vol. 275, pp. 1177–1185, 2018. doi: 10.1016/j.neucom.2017.09.066
|
[30] |
X. X. Hua, D. R. Huang, and S. H. Guo, “Extended state observer based on ADRC of linear system with incipient fault,” Int. J. Control Autom. Syst., vol. 18, pp. 1425–1424, 2020. doi: 10.1007/s12555-019-0052-2
|
[31] |
Y. M. Wu and X. X. He, “Secure consensus control for multi-agent systems with attacks and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 136–142, 2017. doi: 10.1109/JAS.2016.7510010
|
[32] |
C. Deng and C. Y. Wen, “Distributed resilient observer-based fault-tolerant control for heterogeneous multi-agent systems under actuator faults and DoS attacks,” IEEE Trans. Control Netw. Syst., vol. 7, no. 3, pp. 1308–1318, 2020. doi: 10.1109/TCNS.2020.2972601
|
[33] |
L. Zhao and G. H. Yang, “Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks,” Inf. Sci., vol. 526, pp. 39–53, 2020. doi: 10.1016/j.ins.2020.03.083
|
[34] |
L. Zhao and G. H. Yang, “Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks,” J. Frankl. Inst., vol. 357, no. 6, pp. 3419–3433, 2020. doi: 10.1016/j.jfranklin.2019.12.032
|
[35] |
P. Yu, L. Ding, Z. W. Liu, and Z. H. Guan, “A distributed event-triggered transmission strategy for exponential consensus of general linear multi-agent systems with directed topology,” J. Frankl. Inst., vol. 352, no. 12, pp. 5866–5881, 2015. doi: 10.1016/j.jfranklin.2015.10.014
|
[36] |
Q. Song, F. Liu, J. D. Cao, and W. W. Yu, “Pinning-controllability analysis of complex networks: An M-matrix approach,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 59, no. 11, pp. 2692–2701, 2012. doi: 10.1109/TCSI.2012.2190573
|
[37] |
C. Peng, J. Zhang, and Q. L. Han, “Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 49, no. 3, pp. 589–599, 2019. doi: 10.1109/TSMC.2018.2814572
|