A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 6
Jun.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
C. Liu, B. Jiang, X. F. Wang, H. L. Yang, and  S. R. Xie,  “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, Jun. 2022. doi: 10.1109/JAS.2022.105419
Citation: C. Liu, B. Jiang, X. F. Wang, H. L. Yang, and  S. R. Xie,  “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, Jun. 2022. doi: 10.1109/JAS.2022.105419

Distributed Fault-Tolerant Consensus Tracking of Multi-Agent Systems Under Cyber-Attacks

doi: 10.1109/JAS.2022.105419
Funds:  This work was supported by the National Key R&D Program of China (2018AAA0102804), National Natural Science Foundation of China (62020106003, 62103250, 61773201), Fundamental Research Funds for the Central Universities (NC2020002, NP2020103), Shanghai Sailing Program (21YF1414000)
More Information
  • This paper investigates the distributed fault-tolerant consensus tracking problem of nonlinear multi-agent systems with general incipient and abrupt time-varying actuator faults under cyber-attacks. First, a decentralized unknown input observer is established to estimate relative states and actuator faults. Second, the estimated and output neighboring information is combined with distributed fault-tolerant consensus tracking controllers. Criteria of reaching leader-following exponential consensus tracking of multi-agent systems under both connectivity-maintained and connectivity-mixed attacks are derived with average dwelling time, attack frequency, and attack activation rate technique, respectively. Simulation example verifies the effectiveness of the fault-tolerant consensus tracking algorithm.

     

  • loading
  • [1]
    H. B. Du, Z. Q. Chen, and G. H. Wen, “Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft,” J. Guid. Control Dyn., vol. 39, no. 4, pp. 941–948, 2016.
    [2]
    Q. S. Wang, D. Huang, Z. S. Duan, and J. Y. Wang, “Consensus tracking control with transient performance improvement for a group of unmanned aerial vehicles subject to faults and parameter uncertainty,” Int. J. Control, vol. 92, no. 4, pp. 796–815, 2019. doi: 10.1080/00207179.2017.1370555
    [3]
    W. Wang, J. S. Huang, C. Y. Wen, and H. J. Fan, “Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots,” Automatica, vol. 50, no. 4, pp. 1254–1263, 2014. doi: 10.1016/j.automatica.2014.02.028
    [4]
    J. H. Qin, Q. C. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent systems: A brief survey,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4972–4983, 2017. doi: 10.1109/TIE.2016.2636810
    [5]
    M. E. Valcher and I. Zorzan, “On the consensus of homogeneous multi-agent systems with arbitrarily switching topology,” Automatica, vol. 84, pp. 79–85, 2017. doi: 10.1016/j.automatica.2017.07.011
    [6]
    Z. Y. Zuo, B. L. Tian, M. Defoort, and Z. T. Ding, “Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 563–570, 2018. doi: 10.1109/TAC.2017.2729502
    [7]
    B. Cheng, X. K. Wang, and Z. K. Li, “Event-triggered consensus of homogeneous and heterogeneous multiagent systems with jointly connected switching topologies,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4421–4430, 2019. doi: 10.1109/TCYB.2018.2864974
    [8]
    M. L. Lv, W. W. Yu, J. D. Cao, and S. Baldi, “A separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., 2021. DOI: 10.1109/TNNLS.2021.3070824
    [9]
    W. L. He, Z. K. Mo, Q. L. Han, and F. Qian, “Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1326–1334, 2020.
    [10]
    P. Cheng, Z. Y. Yang, J. M. Chen, et al., “An event-based stealthy attack on remote state estimation,” IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4348–4355, 2020. doi: 10.1109/TAC.2019.2956021
    [11]
    M. L. Lv, W. W. Yu, J. D. Cao, and S. Baldi, “Consensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based control,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.3028171
    [12]
    S. Wu, K. M. Ding, P. Cheng, and L. Shi, “Optimal scheduling of multiple sensors over lossy and bandwidth limited channels,” IEEE Trans. Control Netw. Syst., vol. 7, no. 3, pp. 1188–1200, 2020. doi: 10.1109/TCNS.2020.2966671
    [13]
    D. Ye and X. Yang, “Distributed event-triggered consensus for nonlinear multi-agent systems subject to cyber attacks,” Inf. Sci., vol. 473, pp. 178–189, 2019. doi: 10.1016/j.ins.2018.09.030
    [14]
    D. R. Ding, Z. D. Wang, D. W. C. Ho, and G. L. Wei, “Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1936–1947, 2017. doi: 10.1109/TCYB.2016.2582802
    [15]
    K. F. E. Tsang, M. Y. Huang, K. H. Johansson, and L. Shi, “Sparse linear injection attack on multi-agent consensus control systems,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 665–670, 2021. doi: 10.1109/LCSYS.2020.3004920
    [16]
    D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, 2021. doi: 10.1109/JAS.2021.1003820
    [17]
    Y. Xu, M. Fang, Z. G. Wu, et al., “Input-based event-triggering consensus of multiagent systems under denial-of-service attacks,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 50, no. 4, pp. 1455–1464, 2020. doi: 10.1109/TSMC.2018.2875250
    [18]
    W. M. Fu, J. H. Qin, Y. Shi, et al., “Resilient consensus of discrete-time complex cyber-physical networks under deception attacks,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4868–4877, 2020. doi: 10.1109/TII.2019.2933596
    [19]
    Y. Yang, H. W. Xu, and D. Yue, “Observer-based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 66, no. 8, pp. 3089–3099, 2019. doi: 10.1109/TCSI.2019.2904747
    [20]
    Z. Feng, G. Q. Hu, and G. H. Wen, “Distributed consensus tracking for multi-agent systems under two types of attacks,” Int. J. Robust Nonlinear Control, vol. 26, no. 5, pp. 896–918, 2016. doi: 10.1002/rnc.3342
    [21]
    H. Yang, Q. L. Han, X. H. Ge, et al., “Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies,” IEEE Trans. Ind. Inform., vol. 16, no. 1, pp. 4–17, 2020. doi: 10.1109/TII.2019.2945004
    [22]
    D. Ye, X. G. Zhao, and B. Cao, “Distributed adaptive fault-tolerant consensus tracking of multi-agent systems against time-varying actuator faults,” IET Contr. Theory Appl., vol. 10, no. 5, pp. 554–563, 2016. doi: 10.1049/iet-cta.2015.0790
    [23]
    Z. Q. Zuo, J. Zhang, and Y. J. Wang, “Adaptive fault-tolerant tracking control for linear and Lipchitz nonlinear multi-agent systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3923–3931, 2015.
    [24]
    C. Deng, W. N. Gao, and W. W. Che, “Distributed adaptive fault-tolerant output regulation of heterogeneous multi-agent systems with coupling uncertainties and actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1098–1106, 2020. doi: 10.1109/JAS.2020.1003258
    [25]
    X. Z. Jin, S. F. Wang, J. H. Qin, et al., “Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 65, no. 7, pp. 2243–2255, 2018. doi: 10.1109/TCSI.2017.2782729
    [26]
    C. Liu, B. Jiang, K. Zhang, and R. J. Patton, “Hierarchical structure-based fault estimation and fault-tolerant control for multiagent systems,” IEEE Trans. Control Netw. Syst., vol. 6, no. 2, pp. 586–597, 2019. doi: 10.1109/TCNS.2018.2860460
    [27]
    D. Ye, M. M. Chen, and H. J. Yang, “Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 757–767, 2019. doi: 10.1109/TCYB.2017.2782731
    [28]
    X. Wang and G. H. Yang, “Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1921–1930, 2020. doi: 10.1109/TCYB.2019.2901542
    [29]
    Y. M. Wu, Z. S. Wang, S. B. Ding, and H. G. Zhang, “Leader-follower consensus of multi-agent systems in directed networks with actuator faults,” Neurocomputing, vol. 275, pp. 1177–1185, 2018. doi: 10.1016/j.neucom.2017.09.066
    [30]
    X. X. Hua, D. R. Huang, and S. H. Guo, “Extended state observer based on ADRC of linear system with incipient fault,” Int. J. Control Autom. Syst., vol. 18, pp. 1425–1424, 2020. doi: 10.1007/s12555-019-0052-2
    [31]
    Y. M. Wu and X. X. He, “Secure consensus control for multi-agent systems with attacks and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 136–142, 2017. doi: 10.1109/JAS.2016.7510010
    [32]
    C. Deng and C. Y. Wen, “Distributed resilient observer-based fault-tolerant control for heterogeneous multi-agent systems under actuator faults and DoS attacks,” IEEE Trans. Control Netw. Syst., vol. 7, no. 3, pp. 1308–1318, 2020. doi: 10.1109/TCNS.2020.2972601
    [33]
    L. Zhao and G. H. Yang, “Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks,” Inf. Sci., vol. 526, pp. 39–53, 2020. doi: 10.1016/j.ins.2020.03.083
    [34]
    L. Zhao and G. H. Yang, “Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks,” J. Frankl. Inst., vol. 357, no. 6, pp. 3419–3433, 2020. doi: 10.1016/j.jfranklin.2019.12.032
    [35]
    P. Yu, L. Ding, Z. W. Liu, and Z. H. Guan, “A distributed event-triggered transmission strategy for exponential consensus of general linear multi-agent systems with directed topology,” J. Frankl. Inst., vol. 352, no. 12, pp. 5866–5881, 2015. doi: 10.1016/j.jfranklin.2015.10.014
    [36]
    Q. Song, F. Liu, J. D. Cao, and W. W. Yu, “Pinning-controllability analysis of complex networks: An M-matrix approach,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 59, no. 11, pp. 2692–2701, 2012. doi: 10.1109/TCSI.2012.2190573
    [37]
    C. Peng, J. Zhang, and Q. L. Han, “Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 49, no. 3, pp. 589–599, 2019. doi: 10.1109/TSMC.2018.2814572

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (541) PDF downloads(106) Cited by()

    Highlights

    • This study attempts to combine network anti-attack and fault-tolerant control technologies effectively
    • It is a brand-new attempt to address the different types of constraints of self-dynamics in physical hierarchy and maintained/paralyzed links in networked hierarchy
    • A novel control structure is proposed with the effective combination of local fault/state estimation in decentralized FE and adjacent output information in distributed FCTC

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return