A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 12
Dec.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Liu, H. Y. Li, Z. Y. Zuo, X. D. Li, and R. Q. Lu, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, Dec. 2022. doi: 10.1109/JAS.2022.105413
Citation: Y. Liu, H. Y. Li, Z. Y. Zuo, X. D. Li, and R. Q. Lu, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, Dec. 2022. doi: 10.1109/JAS.2022.105413

An Overview of Finite/Fixed-Time Control and Its Application in Engineering Systems

doi: 10.1109/JAS.2022.105413
Funds:  This work was partially supported by the National Natural Science Foundation of China (62003097, 62121004, 62033003, 62073019), the Local Innovative and Research Teams Project of Guangdong Special Support Program (2019BT02X353), the Key Area Research and Development Program of Guangdong Province (2021B0101410005), and the Joint Funds of Guangdong Basic and Applied Basic Research Foundation (2019A1515110505)
More Information
  • The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability, the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information. This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.

     

  • loading
  • [1]
    T. Zhang, S. Ge, and C. Hang, “Adaptive neural network control for strict-feedback nonlinear systems using backstepping design,” Automatica, vol. 36, pp. 1835–1846, Dec. 2000. doi: 10.1016/S0005-1098(00)00116-3
    [2]
    S. Ge and C. Wang, “Adaptive NN control of uncertain nonlinear purefeedback systems,” Automatica, vol. 38, pp. 671–682, Apr. 2002. doi: 10.1016/S0005-1098(01)00254-0
    [3]
    B. Chen, X. Liu, S. Ge, and C. Lin, “Adaptive fuzzy control for a class of nonlinear systems by fuzzy approximation approach,” IEEE Trans. Fuzzy Syst., vol. 20, no. 6, pp. 1012–1021, Dec. 2012. doi: 10.1109/TFUZZ.2012.2190048
    [4]
    W. Xiao, L. Cao, H. Li, and R. Lu, “Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay,” Sci. China Inf. Sci., vol. 63, no. 3, p. 132202, Feb. 2020. doi: 10.1007/s11432-019-2678-2
    [5]
    S. Tong, X. Min, and Y. Li, “Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3903–3913, Sep. 2020. doi: 10.1109/TCYB.2020.2977175
    [6]
    G. Dong, L. Cao, and H. Li, “Observer-based adaptive fuzzy output constrained FTC for nonlinear interconnected large-scale systems,” Sci. China-Inf. Sci., vol. 63, no. 1, p. 119206, Jan. 2020. doi: 10.1007/s11432-018-9573-x
    [7]
    Z. Zuo, J. Song, B. Tian, and M. Basin, “Robust fixed-time stabilization control of generic linear systems with mismatched disturbances,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 52, no. 5, pp. 759–768, Feb. 2022. doi: 10.1109/TSMC.2020.3010221
    [8]
    T. Wen, G. Xie, Y. Cao, and B. G. Cai, “A DNN-based channel model for network planning in train control systems,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2392–2399, Mar. 2022. doi: 10.1109/TITS.2021.3093025
    [9]
    S. Bhat and D. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, Mar. 2000. doi: 10.1137/S0363012997321358
    [10]
    X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, pp. 881–888, May 2005. doi: 10.1016/j.automatica.2004.11.036
    [11]
    Y. Hong, Z.-P. Jiang, and G. Feng, “Finite-time input-to-state stability and applications to finite-time control design,” SIAM J. Control Optim., vol. 48, no. 7, pp. 4395–4418, Jul. 2010. doi: 10.1137/070712043
    [12]
    Z. Zhu, Y. Xia, and M. Fu, “Attitude stabilization of rigid spacecraft with finite-time convergence,” Int. J. Robust Nonlinear Control, vol. 21, no. 6, pp. 686–702, Feb. 2011. doi: 10.1002/rnc.1624
    [13]
    Y. Hong, “Finite-time stabilization and stabilizability of a class of controllable systems,” Syst. Control Lett., vol. 46, no. 2, pp. 231–236, Jul. 2002.
    [14]
    A. Pal, S. Kamal, S. Nagar, B. Bandyopadhyay, and L. Fridman, “Design of controllers with arbitrary convergence time,” Automatica, vol. 112, p. 108710, Feb. 2020. doi: 10.1016/j.automatica.2019.108710
    [15]
    Y. Li, K. Li, and S. Tong, “Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 1, pp. 96–110, Jan. 2019. doi: 10.1109/TFUZZ.2018.2868898
    [16]
    Y. Li, T. Yang, and S. Tong, “Adaptive neural networks finite-time optimal control for a class of nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4451–4460, Nov. 2020. doi: 10.1109/TNNLS.2019.2955438
    [17]
    L. H. Kong, W. He, W. J. Yang, Q. Li, and O. Kaynak, “Fuzzy approximation-based finite-time control for a robot with actuator saturation under time-varying constraints of work space,” IEEE Trans. Cybern., vol. 51, no. 10, pp. 4873–4884, Oct. 2021. doi: 10.1109/TCYB.2020.2998837
    [18]
    R. R. Nair, L. Behera, and S. Kumar, “Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 39–47, Jan. 2019. doi: 10.1109/TCST.2017.2757448
    [19]
    J. Liu, Y. L. Zhang, H. Liu, Y. Yu, and C. Sun, “Robust eventtriggered control of second-order disturbed leader-follower mass: A nonsingular finite-time consensus approach,” Int. J. Robust Nonlinear Control, vol. 29, no. 13, pp. 4298–4314, Sep. 2019. doi: 10.1002/rnc.4599
    [20]
    H. Wang and Q. X. Zhu, “Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form,” Automatica, vol. 54, pp. 284–291, Apr. 2015. doi: 10.1016/j.automatica.2015.02.016
    [21]
    A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, Aug. 2012. doi: 10.1109/TAC.2011.2179869
    [22]
    Z. Zuo and L. Tie, “A new class of finite-time nonlinear consensus protocols for multi-agent systems,” Int. J. Control, vol. 87, no. 2, pp. 363–370, Feb. 2014. doi: 10.1080/00207179.2013.834484
    [23]
    Z. Zuo and L. Tie, “Distributed robust finite-time nonlinear consensus protocols for multi-agent systems,” Int. J. Syst. Sci., vol. 47, no. 6, pp. 1366–1375, Apr. 2016. doi: 10.1080/00207721.2014.925608
    [24]
    J. J. Yu, S. H. Yu, J. Li, and Y. Yan, “Fixed-time stability theorem of stochastic nonlinear systems,” Int. J. Control, vol. 92, no. 9, pp. 2194–2200, Sep. 2019. doi: 10.1080/00207179.2018.1430900
    [25]
    H. F. Li, C. D. Li, T. W. Huang, and D. Q. Ouyang, “Fixed-time stability and stabilization of impulsive dynamical systems,” J. Frankl. Inst.-Eng. Appl. Math., vol. 354, pp. 8626–8644, Dec. 2017. doi: 10.1016/j.jfranklin.2017.09.036
    [26]
    J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixed-time event-triggered consensus for nonlinear multiagent systems without continuous communications,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 49, no. 11, pp. 2221–2229, Nov. 2019. doi: 10.1109/TSMC.2018.2876334
    [27]
    J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixed-time leader–follower consensus of networked nonlinear systems via event/self-triggered control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 5029–5037, Nov. 2020. doi: 10.1109/TNNLS.2019.2957069
    [28]
    D. A. Rodrigo, G. David, J. Esteban, D. Juan, and D. Michael, “Enhancing the settling time estimation of a class of fixed-time stable systems,” Int. J. Robust Nonlinear Control, vol. 29, pp. 4135–4148, Aug. 2019. doi: 10.1002/rnc.4600
    [29]
    X. Jin, “Adaptive fixed-time control for mimo nonlinear systems with asymmetric output constraints using universal barrier functions,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 3046–3053, Jul. 2019. doi: 10.1109/TAC.2018.2874877
    [30]
    D. Y. Li, S. Z. Ge, and T. H. Lee, “Fixed-time-synchronized consensus control of multi-agent systems,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 89–98, Mar. 2021. doi: 10.1109/TCNS.2020.3034523
    [31]
    C. Hu, H. B. He, and H. J. Jiang, “Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 2882–2892, Jun. 2021. doi: 10.1109/TCYB.2020.2977934
    [32]
    C. Hu, J. Yu, Z. H. Chen, H. J. Jiang, and T. W. Huang, “Fixedtime stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks,” Neural Netw., vol. 89, pp. 74–83, May 2017. doi: 10.1016/j.neunet.2017.02.001
    [33]
    F. Wang and G. Lai, “Fixed-time control design for nonlinear uncertain systems via adaptive method,” Syst. Control Lett., vol. 140, p. 104704, Jun. 2020. doi: 10.1016/j.sysconle.2020.104704
    [34]
    J. Feng, J. Yu, C. D. Yang, and H. J. Jiang, “Nonseparation methodbased finite/fixed-time synchronization of fully complex-valued discontinuous neural networks,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3212–3223, Jun. 2021. doi: 10.1109/TCYB.2020.2980684
    [35]
    G. J. Ji, C. Hu, J. Yu, and H. J. Jiang, “Finite-time and fixed-time synchronization of discontinuous complex networks: A unified control framework design,” J. Frankl. Inst.-Eng. Appl. Math., vol. 355, pp. 4665–4685, Jul. 2018. doi: 10.1016/j.jfranklin.2018.04.026
    [36]
    W. L. Lu, X. W. Liu, and T. Chen, “A note on finite-time and fixedtime stability,” Neural Netw., vol. 81, pp. 11–15, Sep. 2016. doi: 10.1016/j.neunet.2016.04.011
    [37]
    Y. Shen and Y. Huang, “Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp. 2621–2625, Nov. 2009. doi: 10.1109/TAC.2009.2029298
    [38]
    Z. Zuo, Q.-L. Han, B. Ning, X. Ge, and X.-M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2322–2334, Jun. 2018. doi: 10.1109/TII.2018.2817248
    [39]
    Z.-Y. Sun, M.-M. Yun, and T. Li, “A new approach to fast global finitetime stabilization of high-order nonlinear system,” Automatica, vol. 81, pp. 455–463, Jul. 2017. doi: 10.1016/j.automatica.2017.04.024
    [40]
    A. Filippov, “Differential equations with discontinuous right-hand side,” Dordrecht, The Netherlands: Kluwer, 1988.
    [41]
    Z. Zuo, “Fixed-time stabilization of general linear systems with input delay,” J. Frankl. Inst.-Eng. Appl. Math., vol. 356, pp. 4467–4477, May 2019. doi: 10.1016/j.jfranklin.2019.04.006
    [42]
    Y. Orlov, “Finite time stability and robust control synthesis of uncertain switched systems,” SIAM J. Control Optim., vol. 43, no. 4, pp. 1253–1271, Jul. 2005.
    [43]
    M. Basin, C. Panathula, and Y. Shtessel, “Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control,” Int. J. Control, vol. 89, no. 9, pp. 1777–1787, Aug. 2016. doi: 10.1080/00207179.2016.1184759
    [44]
    Y.-X. Li, “Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems,” Automatica, vol. 106, pp. 117–123, Aug. 2019. doi: 10.1016/j.automatica.2019.04.022
    [45]
    S. Venkataraman and S. Gulati, “Terminal sliding modes: A new approach to nonlinear control synthesis,” Proc. 5th Int. Conf. Advanced Robotics, pp. 443–448, Jun. 1991.
    [46]
    Z. Man, A. Paplinski, and H. R. Wu, “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators,” IEEE Trans. Autom. Control, vol. 39, no. 12, pp. 2464–2469, Dec. 1994. doi: 10.1109/9.362847
    [47]
    X. Yu and Z. Man, “Fast terminal sliding mode control design for nonlinear dynamic systems,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 49, no. 2, pp. 261–264, Feb. 2002. doi: 10.1109/81.983876
    [48]
    Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159–2167, Dec. 2002. doi: 10.1016/S0005-1098(02)00147-4
    [49]
    A.-M. Zou, K. Kumar, Z.-G. Hou, and X. Liu, “Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network,” IEEE Trans. Syst. Man Cybern. Part B-Cybern., vol. 41, no. 4, pp. 950–963, Aug. 2011. doi: 10.1109/TSMCB.2010.2101592
    [50]
    S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no. 11, pp. 1957–1964, Nov. 2005. doi: 10.1016/j.automatica.2005.07.001
    [51]
    G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second order sliding mode control,” IEEE Trans. Autom. Control, vol. 43, no. 2, pp. 241–246, Feb. 1998. doi: 10.1109/9.661074
    [52]
    S. Mobayen, “Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties,” Complexity, vol. 21, no. 2, pp. 239–244, Dec. 2015. doi: 10.1002/cplx.21600
    [53]
    B. Hashtarkhani and M. Khosrowjerdi, “Neural adaptive fault tolerant control of nonlinear fractional order systems via terminal sliding mode approach,” J. Comput. Nonlinear Dyn., vol. 14, no. 3, pp. 1009–1011, Mar. 2019.
    [54]
    Q. Zhang, C. Wang, X. Su, and D. Xu, “Observer-based terminal sliding mode control of non-affine nonlinear systems: Finite-time approach,” J. Frankl. Inst.-Eng. Appl. Math., vol. 355, no. 16, pp. 7985–8004, Nov. 2018. doi: 10.1016/j.jfranklin.2018.08.018
    [55]
    S. Mobayen, “Adaptive global terminal sliding mode control scheme with improved dynamic surface for uncertain nonlinear systems,” Int. J. Control Autom. Syst., vol. 16, no. 4, pp. 1692–1700, Aug. 2018. doi: 10.1007/s12555-017-0473-8
    [56]
    M. Corradini and A. Cristofaro, “Nonsingular terminal sliding mode control of nonlinear planar systems with global fixed-time stability guarantees,” Automatica, vol. 95, no. 9, pp. 561–565, Sep. 2018.
    [57]
    G. Sun, Z. Ma, and J. Yu, “Discrete-time fractional order terminal sliding mode tracking control for linear motor,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3386–3394, Apr. 2018. doi: 10.1109/TIE.2017.2748045
    [58]
    T. Zeng, X. Ren, and Y. Zhang, “Fixed-time sliding mode control and high-gain nonlinearity compensation for dual-motor driving system,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4090–4098, Jun. 2020. doi: 10.1109/TII.2019.2950806
    [59]
    J. Ni, L. Liu, C. Liu, and X. Hu, “Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems,” Nonlinear Dyn., vol. 89, pp. 2065–2083, Aug. 2017. doi: 10.1007/s11071-017-3570-6
    [60]
    Z. Zuo, “Non-singular fixed-time terminal sliding mode control of nonlinear systems,” IET Contr. Theory Appl., vol. 9, no. 4, pp. 545–552, Feb. 2015. doi: 10.1049/iet-cta.2014.0202
    [61]
    J. Ni, L. Liu, C. Liu, X. Hu, and S. Li, “Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system,” IEEE Trans. Circuits Syst. Ⅱ-Express Briefs, vol. 64, no. 2, pp. 151–155, Feb. 2017. doi: 10.1109/TCSII.2016.2551539
    [62]
    Z. Zhu, Y. Xia, and M. Fu, “Adaptive sliding mode control for attitude stabilization with actuator saturation,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4898–4907, Oct. 2011. doi: 10.1109/TIE.2011.2107719
    [63]
    J. Liu and F. Sun, “Research and development on theory and algorithms of sliding mode control,” Control Theory and Appl., vol. 24, no. 3, pp. 407–418, Oct. 2007.
    [64]
    Kachroo and M. Tomizuka, “Chattering reduction and error convergence in the sliding mode control of a class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 41, no. 7, pp. 1063–1068, Jul. 1996. doi: 10.1109/9.508917
    [65]
    S. Chung and C. Lin, “A transformed lure problem for sliding mode control and chattering reduction,” IEEE Trans. Autom. Control, vol. 44, no. 3, pp. 563–568, Mar. 1999. doi: 10.1109/9.751351
    [66]
    S. Ding, C. Qian, S. Li, and Q. Li, “Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations,” Int. J. Robust Nonlinear Control, vol. 21, no. 3, pp. 271–294, Feb. 2011. doi: 10.1002/rnc.1591
    [67]
    Z. Sun, L. Xue, and K. Zhang, “A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system,” Automatica, vol. 58, no. 8, pp. 60–66, Aug. 2015.
    [68]
    M. Cai, Z. Xiang, and J. Guo, “Adaptive finite-time control for uncertain nonlinear systems with application to mechanical systems,” Nonlinear Dyn., vol. 84, no. 2, pp. 943–958, Apr. 2016. doi: 10.1007/s11071-015-2541-z
    [69]
    K. Zhang and X. Zhang, “Finite-time stabilisation for high-order nonlinear systems with low-order and high-order nonlinearities,” Int. J. Control, vol. 88, no. 8, pp. 1576–1585, Aug. 2015. doi: 10.1080/00207179.2015.1011697
    [70]
    J. Fu, R. Ma, and T. Chai, “Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers,” Automatica, vol. 54, no. 4, pp. 360–373, Apr. 2015.
    [71]
    J. Fu, R. Ma, and T. Chai, “Adaptive finite-time stabilization of a class of uncertain nonlinear systems via logic-based switchings,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5998–6003, Nov. 2017. doi: 10.1109/TAC.2017.2705287
    [72]
    F. Cao, Y. Wu, and Y. Liu, “Finite-time stabilization for a class of switched stochastic nonlinear systems with dead-zone input nonlinearities,” Int. J. Robust Nonlinear Control, vol. 28, no. 9, pp. 3239–3257, Jun. 2018. doi: 10.1002/rnc.4078
    [73]
    Z. Sun, Y. Shao, and C. Chen, “Fast finite-time stability and its application in adaptive control of high-order nonlinear system,” Automatica, vol. 106, no. 5, pp. 339–348, Aug. 2019.
    [74]
    J. Wu, W. Chen, and J. Li, “Global finite-time adaptive stabilization for nonlinear systems with mutiple unknown control directions,” Automatica, vol. 69, no. 7, pp. 298–307, Jul. 2016.
    [75]
    J. Huang, C. Wen, W. Wang, and Y. Song, “Design of adaptive finite-time controllers for nonlinear uncertain systems based on given transient specifications,” Automatica, vol. 67, no. 7, pp. 395–404, Jul. 2016.
    [76]
    C. Qian and J. Li, “Global finite-time stabilization by output feedback for planar systems without observable linearization,” IEEE Trans. Autom. Control, vol. 50, no. 6, pp. 885–890, Jun. 2005. doi: 10.1109/TAC.2005.849253
    [77]
    J. Li and C. Qian, “Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems,” IEEE Trans. Autom. Control, vol. 51, no. 5, pp. 879–884, May 2006. doi: 10.1109/TAC.2006.874991
    [78]
    Y. Shen and X. Xia, “Semi-global finite-time observers for nonlinear systems,” Automatica, vol. 44, no. 12, pp. 3152–3156, Dec. 2008. doi: 10.1016/j.automatica.2008.05.015
    [79]
    S. Bhat and D. Bernstein, “Finite-time stability of homogeneous systems,” in Proc. American Control Conf., Aug. 1997, pp. 2513–2514.
    [80]
    Y. Hong, J. Huang, and Y. Xu, “On an output feedback finite-time stabilization problem,” IEEE Trans. Autom. Control, vol. 46, no. 2, pp. 305–309, Feb. 2001. doi: 10.1109/9.905699
    [81]
    S. Bhat and D. Bernstein, “Geometric homogeneity with applications to finite-time stability,” Math. Control Signal Syst., vol. 17, no. 2, pp. 101–127, Jun. 2005. doi: 10.1007/s00498-005-0151-x
    [82]
    Y. Orlov, “Finite time stability of homogeneous switched systems,” in Proc. 42nd IEEE Conf. Decision and Control, Mar. 2003, pp. 4271–4276
    [83]
    J. Yin, S. Khoo, and Z. Man, “Finite-time stability theorems of homogeneous stochastic nonlinear systems,” Syst. Control Lett., vol. 100, no. 2, pp. 6–13, Feb. 2017.
    [84]
    Y. Shen, Y. Huang, and J. Gu, “Global finite-time observer for Lipschitz nonlinear systems,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 418–424, Feb. 2011. doi: 10.1109/TAC.2010.2088610
    [85]
    H. Du, C. Qian, S. Yang, and S. Li, “Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems,” Automatica, vol. 49, no. 2, pp. 601–609, Feb. 2013. doi: 10.1016/j.automatica.2012.11.036
    [86]
    Z. Zhang, X. Liu, Y. Liu, C. Lin, and B. Chen, “Fixed-time almost disturbance decoupling of nonlinear time-varying systems with multiple disturbances and dead-zone input,” Inf. Sci., vol. 450, pp. 267–283, Jun. 2018. doi: 10.1016/j.ins.2018.03.044
    [87]
    B. Jiang, C. Li, S. Hou, and G. Ma, “Fixed-time attitude tracking control for spacecraft based on adding power integrator technique,” Int. J. Robust Nonlinear Control, vol. 30, no. 6, pp. 2515–2532, Apr. 2020. doi: 10.1002/rnc.4897
    [88]
    D. Wu, H. Du, G. Wen, and J. Lü, “Fixed-time synchronization control for a class of master-slave systems based on homogeneous method,” IEEE Trans. Circuits Syst. Ⅱ-Express Briefs, vol. 66, no. 9, pp. 1547–1551, Sep. 2019. doi: 10.1109/TCSII.2018.2886574
    [89]
    Y. Cao, C. Wen, S. Tan, and Y. Song, “Fixed-time synchronization control for a class of master-slave systems based on homogeneous method prespecifiable fixed-time control for a class of uncertain nonlinear systems in strict-feedback form,” Int. J. Robust Nonlinear Control, vol. 30, no. 3, pp. 1203–1222, Jul. 2020. doi: 10.1002/rnc.4820
    [90]
    Z. Zhang and Y. Wu, “Fixed-time regulation control of uncertain nonholonomic systems and its applications,” Int. J. Control, vol. 90, no. 7, pp. 1327–1344, Sep. 2017. doi: 10.1080/00207179.2016.1205758
    [91]
    B. Tian, Z. Zuo, X. Yan, and H. Wang, “A fixed-time output feedback control scheme for double integrator systems,” Automatica, vol. 80, pp. 17–24, Jun. 2017. doi: 10.1016/j.automatica.2017.01.007
    [92]
    Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time,” Automatica, vol. 83, no. 9, pp. 243–251, Sep. 2017.
    [93]
    Y. Wang and Y. Song, “Leader-following control of high-order multiagent systems under directed graphs: Pre-specified finite time approach,” Automatica, vol. 87, no. 1, pp. 113–120, Jan. 2018.
    [94]
    X. Chen and X. Zhang, “Output-feedback control strategies of lowertriangular nonlinear nonholonomic systems in any prescribed finite time,” Int. J. Robust Nonlinear Control, vol. 29, no. 4, pp. 904–918, Mar. 2019. doi: 10.1002/rnc.4413
    [95]
    Y. Liu, X. Liu, Y. Jing, and Z. Zhang, “A novel finite-time adaptive fuzzy tracking control scheme for nonstrict-feedback systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 4, pp. 646–658, Apr. 2019. doi: 10.1109/TFUZZ.2018.2866264
    [96]
    Y. Liu, X. Liu, Y. Jing, X. Chen, and J. Qiu, “Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 4, pp. 1222–1231, Apr. 2020. doi: 10.1109/TNNLS.2019.2919577
    [97]
    Y. Liu, X. Liu, and Y. Jing, “Adaptive practical preassigned finitetime stability for a class of pure-feedback systems with full state constraints,” Int. J. Robust Nonlinear Control, vol. 29, no. 4, pp. 2978–2994, Jul. 2019.
    [98]
    L. Chang, Y. Liu, Y. Jing, X. Chen, and J. Qiu, “Semi-globally practical finite-time H control of TCSC model of power systems based on dynamic surface control,” IEEE Access, vol. 8, pp. 10061–10069, Jan. 2020. doi: 10.1109/ACCESS.2020.2964265
    [99]
    Y. Liu, Y. Jing, and X. Chen, “Adaptive neural practically finite-time congestion control for TCP/AQM network,” Neurocomputing, vol. 351, pp. 26–32, Jul. 2019. doi: 10.1016/j.neucom.2019.03.022
    [100]
    M. Defoort, A. Polyakov, G. Demesure, M. Djemai, and K. Veluvolu, “Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics,” IET Contr. Theory Appl., vol. 9, no. 14, pp. 2165–2170, Sep. 2015. doi: 10.1049/iet-cta.2014.1301
    [101]
    R. Aldana-Lopez, D. Gomez-Gutierrez, M. Defoort, J. Sanchez-Torres, and A. Munoz-Vazquez, “A class of robust consensus algorithm with predefined-time convergence under switching topologies,” Int. J. Robust Nonlinear Control, vol. 29, no. 17, pp. 6179–6198, Nov. 2019. doi: 10.1002/rnc.4715
    [102]
    E. Arabi, T. Yucelen, and J. Singler, “Finite-time distributed control with time transformation,” Int. J. Robust Nonlinear Control, vol. 31, no. 1, pp. 107–130, Jan. 2021. doi: 10.1002/rnc.5264
    [103]
    J.-X. Zhang and G.-H. Yang, “Adaptive fuzzy fault-tolerant control of uncertain Euler-Lagrange systems with process faults,” IEEE Trans. Fuzzy Syst., vol. 28, no. 10, pp. 2619–2630, Oct. 2020. doi: 10.1109/TFUZZ.2019.2945256
    [104]
    G. Chen, Y. Yue, and Y. Song, “Finite-time cooperative-tracking control for networked Euler-Lagrange systems,” IET Contr. Theory Appl., vol. 7, no. 11, pp. 1487–1497, Jul. 2013. doi: 10.1049/iet-cta.2013.0205
    [105]
    Y. Zhao, Z. Duan, and G. Wen, “Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements,” Int. J. Robust Nonlinear Control, vol. 25, no. 11, pp. 1688–1703, Jul. 2015. doi: 10.1002/rnc.3170
    [106]
    E. Cruz-Zavala, E. Nuno, and J. Moreno, “On the finite-time regulation of Euler-Lagrange systems without velocity measurements,” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4309–4316, Dec. 2018. doi: 10.1109/TAC.2018.2817232
    [107]
    W. He, C. Xu, Q.-L. Han, F. Qian, and Z. Lang, “Finite-time L2 leader-follower consensus of networked Euler-Lagrange systems with external disturbances,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 48, no. 11, pp. 1920–1928, Nov. 2018. doi: 10.1109/TSMC.2017.2774251
    [108]
    L i, Z. Song, Z. Wang, and W. Liu, “Fixed-time consensus for disturbed multiple Euler-Lagrange systems with connectivity preservation and quantized input,” Appl. Math. Comput., vol. 380, p. 125303, Sep. 2020.
    [109]
    S. Li, H. Du, and X. Lin, “Finite-time consensus algorithm for multiagent systems with double-integrator dynamics,” Automatica, vol. 47, pp. 1706–1712, Aug. 2011. doi: 10.1016/j.automatica.2011.02.045
    [110]
    Y. Zheng and L. Wang, “Finite-time consensus of heterogeneous multiagent systems with and without velocity measurements,” Syst. Control Lett., vol. 61, no. 8, pp. 871–878, Aug. 2012. doi: 10.1016/j.sysconle.2012.05.009
    [111]
    Y. Zhao, Z. Duan, G. Wen, and Y. Zhang, “Distributed finite-time tracking control for multi-agent systems: An observer-based approach,” Syst. Control Lett., vol. 62, pp. 22–28, Jan. 2013. doi: 10.1016/j.sysconle.2012.10.012
    [112]
    H. Du, Y. He, and Y. Cheng, “Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 61, no. 6, pp. 1778–1788, Jun. 2014. doi: 10.1109/TCSI.2013.2295012
    [113]
    S. Yu and X. Long, “Finite-time consensus for second-order multiagent systems with disturbances by integral sliding mode,” Automatica, vol. 54, pp. 158–165, Apr. 2015. doi: 10.1016/j.automatica.2015.02.001
    [114]
    Z. Zuo, “Nonsingular fixed-time consensus tracking for second-order multi-agent networks,” Automatica, vol. 54, pp. 305–309, Nov. 2015. doi: 10.1016/j.automatica.2015.01.021
    [115]
    J. Fu and J. Wang, “Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties,” Syst. Control Lett., vol. 93, pp. 1–12, Jul. 2016. doi: 10.1016/j.sysconle.2016.03.006
    [116]
    Z. Zuo, B. Tian, M. Defoort, and Z. Ding, “Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 563–570, Feb. 2018. doi: 10.1109/TAC.2017.2729502
    [117]
    Q. Xiao, H. Liu, X. Wang, and Y. Huang, “A note on the fixed-time bipartite flocking for nonlinear multi-agent systems,” Appl. Math. Lett., vol. 99, p. 105973, Jan. 2020. doi: 10.1016/j.aml.2019.07.004
    [118]
    Z. Y. Zuo, M. Defoort, B. L. Tian, and Z. T. Ding, “Distributed consensus observer for multiagent systems with high-order integrator dynamics,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1771–1778, Apr. 2020. doi: 10.1109/TAC.2019.2936555
    [119]
    T. Zhang, Q. Li, C.-S. Zhang, H.-W. Liang, P. Li, T.-M. Wang, S. Li, Y.-L. Zhu, and C. Wu, “Current trends in the development of intelligent unmanned autonomous systems,” Front. Inform. Technol. Elect. Eng., vol. 18, no. 1, pp. 68–85, Jan. 2017. doi: 10.1631/FITEE.1601650
    [120]
    C. Fu, W. Hong, H. Lu, L. Zhang, X. Guo, and Y. Tian, “Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints,” Aerosp. Sci. Technol., vol. 78, pp. 593–603, Jul. 2018. doi: 10.1016/j.ast.2018.05.021
    [121]
    F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, “Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 5044–5056, Aug. 2016.
    [122]
    Z. Yu, Z. Liu, Y. Zhang, Y. Qu, and C.-Y. Su, “Distributed finitetime fault-tolerant containment control for multiple unmanned aerial vehicles,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2077–2091, Jun. 2020. doi: 10.1109/TNNLS.2019.2927887
    [123]
    N. Zhang, W. Gai, M. Zhong, and J. Zhang, “A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance,” Aerosp. Sci. Technol., vol. 86, pp. 204–214, Mar. 2019. doi: 10.1016/j.ast.2019.01.021
    [124]
    C. Ma and W. Wu, “Finite-time formation of unmanned aerial vehicles with switching topologies and disturbances: An average dwell time approach,” Int. J. Aerosp. Eng., vol. 2019, pp. 1–12, Apr. 2019.
    [125]
    D. Wang, Q. Zong, B. Tian, H. Lu, and J. Wang, “Adaptive finitetime reconfiguration control of unmanned aerial vehicles with a moving leader,” Nonlinear Dyn., vol. 95, pp. 1099–1116, Jan. 2019. doi: 10.1007/s11071-018-4618-y
    [126]
    C. Fu, Y. Tian, H. Huang, L. Zhang, and C. Peng, “Finite-time trajectory tracking control for a 12-rotor unmanned aerial vehicle with input saturation,” ISA Trans., vol. 81, pp. 52–62, Oct. 2018. doi: 10.1016/j.isatra.2018.08.005
    [127]
    X. Lin, S. Huang, W. Zhang, and S. Li, “Finite-time feedback stabilization of a class of input-delay systems with saturating actuators via digital control,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1281–1290, Sep. 2019. doi: 10.1109/JAS.2019.1911525
    [128]
    L. Zhang, Y. Xia, G. Shen, and B. Cui, “Fixed-time attitude tracking control for spacecraft based on fixed-time extended state observer,” Sci. China-Inf. Sci., vol. 64, no. 11, pp. 1–17, Nov. 2021. doi: 10.1007/s11431-021-1822-0
    [129]
    J. Ghommam, M. Saad, S. Wright, and Q. Zhu, “Relay manoeuvre based fixed-time synchronized tracking control for UAV transport system,” Aerosp. Sci. Technol., vol. 103, p. 105887, Aug. 2020. doi: 10.1016/j.ast.2020.105887
    [130]
    L. Hao, X. Qi, and Z. Yang, “Topology optimised fixed-time consensus for multi-UAV system in a multipath fading channel,” IET Commun., vol. 14, no. 11, pp. 1730–1738, Jul. 2020. doi: 10.1049/iet-com.2019.0699
    [131]
    J. Chen, C. Hua, and X. Guan, “Image based fixed time visual servoing control for the quadrotor UAV,” IET Contr. Theory Appl., vol. 13, no. 18, pp. 3117–3123, Dec. 2019. doi: 10.1049/iet-cta.2019.0032
    [132]
    S.-L. Dai, S. He, X. Chen, and X. Jin, “Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 3662–3671, Jun. 2020. doi: 10.1109/TII.2019.2939263
    [133]
    D. Wu, Y. Cheng, H. Du, W. Zhu, and M. Zhu, “Finite-time output feedback tracking control for a nonholonomic wheeled mobile robot,” Aerosp. Sci. Technol., vol. 78, pp. 574–579, Jul. 2018. doi: 10.1016/j.ast.2018.05.005
    [134]
    Y. Cheng, R. Jia, H. Du, G. Wen, and W. Zhu, “Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback,” Int. J. Robust Nonlinear Control, vol. 28, pp. 2082–2096, Apr. 2018. doi: 10.1002/rnc.4002
    [135]
    H. Du, G. Wen, y. Cheng, Y. He, and R. Jia, “Distributed finitetime cooperative control of multiple high-order nonholonomic mobile robots,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 12, pp. 2998–3006, Dec. 2017. doi: 10.1109/TNNLS.2016.2610140
    [136]
    Y. Zhu and F. Zhu, “Distributed adaptive longitudinal control for uncertain third-order vehicle platoon in a networked environment,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9183–9197, Oct. 2018. doi: 10.1109/TVT.2018.2863284
    [137]
    Y. Li, C. Tang, K. Li, S. Peeta, X. He, and Y. Wang, “Nonlinear finitetime consensus-based connected vehicle platoon control under fixed and switching communication topologies,” Transp. Res. Pt. C-Emerg. Technol., vol. 93, pp. 525–543, Aug. 2018. doi: 10.1016/j.trc.2018.06.013
    [138]
    T. Yang, Y. Yuan, K. Li, J. Goncalves, and K. Johansson, “Finite-time road grade computation for a vehicle platoon,” in Proc. 53rd IEEE Conf. Decision and Control, Feb. 2015, pp. 6105–6110.
    [139]
    J. Gong, Y. Zhao, and Z. Lu, “Finite-time bidirectional platoon control of interconnected vehicles with multiple disturbances,” in Proc. 36th Chinese Control Conf., Sep. 2017, pp. 9472–9477.
    [140]
    Z. Peng, J. Wang, D. Wang, and Q.-L. Han, “An overview of recent advances in coordinated control of multiple autonomous surface vehicles,” IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 732–745, Feb. 2021. doi: 10.1109/TII.2020.3004343
    [141]
    N. Wang, H. Karimi, H. Li, and S.-F. Su, “Accurate trajectory tracking of disturbed surface vehicles: A finite-time control approach,” IEEEASME Trans. Mechatron, vol. 24, no. 3, pp. 1064–1074, Jun. 2019. doi: 10.1109/TMECH.2019.2906395
    [142]
    N. Wang and C. Ahn, “Hyperbolic-tangent LOS guidance-based finitetime path following of underactuated marine vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8566–8575, Oct. 2020. doi: 10.1109/TIE.2019.2947845
    [143]
    N. Wang and Z. Deng, “Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations,” IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1172–1181, Feb. 2020. doi: 10.1109/TII.2019.2930471
    [144]
    X. Jin, “Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints,” Automatica, vol. 68, pp. 228–236, Jun. 2016. doi: 10.1016/j.automatica.2016.01.064
    [145]
    Z. Shen, Y. Wang, H. Yu, and C. Guo, “Finite-time adaptive tracking control of marine vehicles with complex unknowns and input saturation,” Ocean Eng., vol. 198, p. 106980, Feb. 2020. doi: 10.1016/j.oceaneng.2020.106980
    [146]
    Z. Yan, H. Yu, W. Zhang, B. Li, and J. Zhou, “Globally finite-time stable tracking control of underactuated uuvs,” Ocean Eng., vol. 107, pp. 132–146, Oct. 2015. doi: 10.1016/j.oceaneng.2015.07.039
    [147]
    J.-X. Zhang and G.-H. Yang, “Fault-tolerant fixed-time trajectory tracking control of autonomous surface vessels with specified accuracy,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4889–4899, Jun. 2020. doi: 10.1109/TIE.2019.2931242
    [148]
    Z. Gao and G. Guo, “Command-filtered fixed-time trajectory tracking control of surface vehicles based on a disturbance observer,” Int. J. Robust Nonlinear Control, vol. 29, pp. 4348–4365, Sep. 2019. doi: 10.1002/rnc.4628
    [149]
    Z. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, Mar. 2020. doi: 10.1109/JAS.2020.1003057
    [150]
    J. Zhang, S. Yu, and Y. Yan, “Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties,” ISA Trans., vol. 93, pp. 145–155, Oct. 2019. doi: 10.1016/j.isatra.2019.03.007
    [151]
    B. L. Tian, L. H. Liu, H. C. Lu, Z. Y. Zuo, Q. Zong, and Y. Zhang, “Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2567–2577, Mar. 2018. doi: 10.1109/TIE.2017.2739700
    [152]
    H. H. Pan and W. C. Sun, “Nonlinear output feedback finite-time control for vehicle active suspension systems,” IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2073–2082, Apr. 2019. doi: 10.1109/TII.2018.2866518
    [153]
    H. H. Pan, W. C. Sun, H. J. Gao, and J. Y. Yu, “Finite-time stabilization for vehicle active suspension systems with hard constraints,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2663–2672, Oct. 2015. doi: 10.1109/TITS.2015.2414657
    [154]
    R. Kuma, A. K. Behera, and B. Bandyopadhya, “Robust finitetime tracking of Stewart platform: A super-twisting like observer-based forward kinematics solution,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3776–3785, May 2017. doi: 10.1109/TIE.2017.2652341
    [155]
    L. Wang, T. Dong, and M.-F. Ge, “Finite-time synchronization of memristor chaotic systems and its application in image encryption,” Appl. Math. Comput., vol. 347, pp. 293–305, Apr. 2019.
    [156]
    T. Binazadeh and H. Gholami, “Finite-time robust passive control of uncertain discrete timedelay systems using output feedback: Application on Chuas circuit,” Circuits Syst. Signal Process., vol. 39, pp. 2349–2375, May 2020. doi: 10.1007/s00034-019-01275-y
    [157]
    H. Min, S. Xu, B. Zhang, and D. Na, “Practically finite-time control for nonlinear systems with mismatching conditions and application to a robot system,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 50, no. 2, pp. 480–489, Feb. 2020. doi: 10.1109/TSMC.2017.2748227
    [158]
    S. Nateghi, Y. Shtessel, and C. Edwards, “Cyber-attacks and faults reconstruction using finite time convergent observation algorithms: Electric power network application,” J. Frankl. Inst.-Eng. Appl. Math., vol. 357, no. 1, pp. 179–205, Jan. 2020. doi: 10.1016/j.jfranklin.2019.10.002
    [159]
    X. Chu, Z. Peng, G. Wen, and A. Rahmani, “Robust fixed-time consensus tracking with application to formation control of unicycles,” IET Contr. Theory Appl., vol. 12, no. 1, pp. 53–59, Jan. 2018. doi: 10.1049/iet-cta.2017.0319
    [160]
    F. Wang, B. Chen, Y. Sun, Y. Gao, and C. Lin, “Finite-time fuzzy control of stochastic nonlinear systems,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2617–2626, Jun. 2020. doi: 10.1109/TCYB.2019.2925573
    [161]
    F. Wang, Z. Liu, Y. Zhang, and C. Chen, “Adaptive finite-time control of stochastic nonlinear systems with actuator failures,” Fuzzy Sets Syst., vol. 374, pp. 170–183, Nov. 2019. doi: 10.1016/j.fss.2018.12.005
    [162]
    F. Wang and X. Zhang, “Adaptive finite time control of nonlinear systems under time-varying actuator failures,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 49, no. 9, pp. 1845–1852, Sep. 2019. doi: 10.1109/TSMC.2018.2868329
    [163]
    W. Lv and F. Wang, “Finite-time adaptive fuzzy tracking control for a class of nonlinear systems with unknown hysteresis,” Int. J. Fuzzy Syst., vol. 20, pp. 782–790, Mar. 2018. doi: 10.1007/s40815-017-0381-3
    [164]
    F. Wang, B. Chen, C. Lin, J. Zhang, and X. Meng, “Adaptive neural network finite-time output feedback control of quantized nonlinear systems,” IEEE Trans. Cybern., vol. 48, no. 6, pp. 1839–1848, Jun. 2018. doi: 10.1109/TCYB.2017.2715980
    [165]
    L. Zhao, J. Yu, C. Lin, and Y. Ma, “Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 48, no. 11, pp. 2003–2012, Nov. 2018. doi: 10.1109/TSMC.2017.2743696
    [166]
    J. Yu, L. Zhao, H. Yu, C. Lin, and W. Dong, “Fuzzy finite-time command filtered control of nonlinear systems with input saturation,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2378–2387, Aug. 2018. doi: 10.1109/TCYB.2017.2738648
    [167]
    J. Yu, S hi, and L. Zhao, “Finite-time command filtered backstepping control for a class of nonlinear systems,” Automatica, vol. 92, pp. 173–180, Jun. 2018. doi: 10.1016/j.automatica.2018.03.033
    [168]
    C.-H. Zhang and G.-H. Yang, “Event-triggered practical finite-time output feedback stabilization of a class of uncertain nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 29, pp. 3078–3092, Jul. 2019. doi: 10.1002/rnc.4537
    [169]
    Y. Liu, X. Liu, Y. Jing, and Z. Zhang, “Semi-globally practical finitetime stability for uncertain nonlinear systems based on dynamic surface control,” Int. J. Control, vol. 94, no. 2, pp. 476–485, Feb. 2021. doi: 10.1080/00207179.2019.1598579
    [170]
    Y. Liu and Y. Jing, “Practical finite-time almost disturbance decoupling strategy for uncertain nonlinear systems,” Nonlinear Dyn., vol. 95, pp. 117–128, Jan. 2019. doi: 10.1007/s11071-018-4554-x
    [171]
    M. Cai and Z. Xiang, “Adaptive practical finite-time stabilization for uncertain nonstrict feedback nonlinear systems with input nonlinearity,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 47, no. 7, pp. 1668–1678, Jul. 2017. doi: 10.1109/TSMC.2017.2660761
    [172]
    W. Sun and X. Lv, “Practical finite-time fuzzy control for Hamiltonian systems via adaptive event-triggered approach,” Int. J. Fuzzy Syst., vol. 22, pp. 35–45, Feb. 2020. doi: 10.1007/s40815-019-00773-0
    [173]
    Z. Wang and J. Wang, “A practical distributed finite-time control scheme for power system transient stability,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3320–3331, Sep. 2020. doi: 10.1109/TPWRS.2019.2904729
    [174]
    C. Lu, Y. Pan, Y. Liu, and H. Li, “Adaptive fuzzy finite-time faulttolerant control of nonlinear systems with state constraints and input quantization,” Int. J. Adapt. Control Signal Process., vol. 34, no. 9, pp. 1199–1219, Sep. 2020. doi: 10.1002/acs.3146
    [175]
    H. Li, S. Zhao, W. He, and R. Lu, “Adaptive finite-time tracking control of full states constrained nonlinear systems with dead-zone,” Automatica, vol. 100, pp. 99–107, Feb. 2019. doi: 10.1016/j.automatica.2018.10.030
    [176]
    G. Dong, H. Li, H. Ma, and R. Lu, “Finite-time consensus tracking neural network FTC of multi-agent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 653–662, Feb. 2021. doi: 10.1109/TNNLS.2020.2978898
    [177]
    D u, H. Liang, S. Zhao, and C. Ahn, “Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with timevarying output constraints,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 51, no. 5, pp. 3136–3147, May 2021. doi: 10.1109/TSMC.2019.2918351
    [178]
    H. Wang, W. Bai, and X. Liu, “Finite-time adaptive fault-tolerant control for nonlinear systems with multiple faults,” IEEE/CAA J. Autom. Sinica, vol. 6, pp. 1417–1427, Nov. 2019. doi: 10.1109/JAS.2019.1911765
    [179]
    Y. Wu, Y. Pan, M. Chen, and H. Li, “Quantized adaptive finite-time bipartite nn tracking control for stochastic multi-agent systems,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 2870–2881, Jun. 2021. doi: 10.1109/TCYB.2020.3008020
    [180]
    D u, Y. Pan, H. Li, and H.-K. Lam, “Nonsingular finite-time eventtriggered fuzzy control for large-scale nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2088–2099, Aug. 2021. doi: 10.1109/TFUZZ.2020.2992632
    [181]
    J. Liu, Y. Yu, H. He, and C. Sun, “Team-triggered practical fixed-time consensus of double-integrator agents with uncertain disturbance,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3263–3272, Jun. 2021. doi: 10.1109/TCYB.2020.2999199
    [182]
    G. Chen, Y. Yang, and F. Deng, “On practical fixed-time stability of discrete-time impulsive switched nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 30, no. 17, pp. 7822–7834, Nov. 2020. doi: 10.1002/rnc.5216
    [183]
    Y. Wu and Z. Wang, “Fuzzy adaptive practical fixed-time consensus for second-order nonlinear multiagent systems under actuator faults,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1150–1162, Mar. 2021. doi: 10.1109/TCYB.2019.2963681
    [184]
    B. Ning, Q.-L. Han, and Z. Zuo, “Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach,” Automatica, vol. 105, pp. 406–414, Jul. 2019. doi: 10.1016/j.automatica.2019.04.013
    [185]
    H. Yang and D. Ye, “Time-varying formation tracking control for highorder nonlinear multi-agent systems in fixed-time framework,” Appl. Math. Comput., vol. 377, p. 125119, Jul. 2020.
    [186]
    Y. Pan, D u, H. Xue, and H.-K. Lam, “Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2388–2398, Aug. 2021. doi: 10.1109/TFUZZ.2020.2999746
    [187]
    F. Cao, Y. Wu, and Z. Zhang, “Global fixed-time stabilization of switched nonlinear systems: A time-varying scaling transformation approach,” IEEE Trans. Circuits Syst. Ⅱ-Express Briefs, vol. 66, no. 11, pp. 1890–1894, Nov. 2019. doi: 10.1109/TCSII.2018.2890556
    [188]
    D. Ba, Y.-X. Li, and S. Tong, “Fixed-time adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems,” Neurocomputing, vol. 363, pp. 273–280, Oct. 2019. doi: 10.1016/j.neucom.2019.06.063
    [189]
    L. Hu, Z. Wang, Q.-L. Han, and X. Liu, “State estimation under false data injection attacks: Security analysis and system protection,” Automatica, vol. 87, pp. 176–183, Jan. 2018. doi: 10.1016/j.automatica.2017.09.028
    [190]
    D. Ding, Z. Wang, Q.-L. Han, and G. Wei, “Security control for discrete-time stochastic nonlinear systems subject to deception attacks,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 48, no. 5, pp. 779–789, May 2018. doi: 10.1109/TSMC.2016.2616544
    [191]
    D. Yao, H. Li, R. Lu, and Y. Shi, “Distributed sliding mode tracking control of second-order nonlinear multi-agent systems: An eventtriggered approach,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3892–3902, Sep. 2020. doi: 10.1109/TCYB.2019.2963087
    [192]
    H. Ma, H. Li, R. Lu, and T. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Sci. ChinaInf. Sci., vol. 63, no. 5, p. 150212, Mar. 2020. doi: 10.1007/s11432-019-2680-1
    [193]
    G. Dong, L. Cao, D. Yao, H. Li, and R. Lu, “Adaptive attitude control for multi-MUAV systems with output dead-zone and actuator fault,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1567–1575, Sep. 2021. doi: 10.1109/JAS.2020.1003605
    [194]
    G. Lin, H. Li, H. Ma, D. Yao, and R. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 111–122, Jan. 2022. doi: 10.1109/JAS.2020.1003596

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1828) PDF downloads(661) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return