IEEE/CAA Journal of Automatica Sinica
Citation:  Y. Liu, H. Y. Li, Z. Y. Zuo, X. D. Li, and R. Q. Lu, “An overview of finite/fixedtime control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, Dec. 2022. doi: 10.1109/JAS.2022.105413 
[1] 
T. Zhang, S. Ge, and C. Hang, “Adaptive neural network control for strictfeedback nonlinear systems using backstepping design,” Automatica, vol. 36, pp. 1835–1846, Dec. 2000. doi: 10.1016/S00051098(00)001163

[2] 
S. Ge and C. Wang, “Adaptive NN control of uncertain nonlinear purefeedback systems,” Automatica, vol. 38, pp. 671–682, Apr. 2002. doi: 10.1016/S00051098(01)002540

[3] 
B. Chen, X. Liu, S. Ge, and C. Lin, “Adaptive fuzzy control for a class of nonlinear systems by fuzzy approximation approach,” IEEE Trans. Fuzzy Syst., vol. 20, no. 6, pp. 1012–1021, Dec. 2012. doi: 10.1109/TFUZZ.2012.2190048

[4] 
W. Xiao, L. Cao, H. Li, and R. Lu, “Observerbased adaptive consensus control for nonlinear multiagent systems with timedelay,” Sci. China Inf. Sci., vol. 63, no. 3, p. 132202, Feb. 2020. doi: 10.1007/s1143201926782

[5] 
S. Tong, X. Min, and Y. Li, “Observerbased adaptive fuzzy tracking control for strictfeedback nonlinear systems with unknown control gain functions,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3903–3913, Sep. 2020. doi: 10.1109/TCYB.2020.2977175

[6] 
G. Dong, L. Cao, and H. Li, “Observerbased adaptive fuzzy output constrained FTC for nonlinear interconnected largescale systems,” Sci. ChinaInf. Sci., vol. 63, no. 1, p. 119206, Jan. 2020. doi: 10.1007/s114320189573x

[7] 
Z. Zuo, J. Song, B. Tian, and M. Basin, “Robust fixedtime stabilization control of generic linear systems with mismatched disturbances,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 5, pp. 759–768, Feb. 2022. doi: 10.1109/TSMC.2020.3010221

[8] 
T. Wen, G. Xie, Y. Cao, and B. G. Cai, “A DNNbased channel model for network planning in train control systems,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2392–2399, Mar. 2022. doi: 10.1109/TITS.2021.3093025

[9] 
S. Bhat and D. Bernstein, “Finitetime stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, Mar. 2000. doi: 10.1137/S0363012997321358

[10] 
X. Huang, W. Lin, and B. Yang, “Global finitetime stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, pp. 881–888, May 2005. doi: 10.1016/j.automatica.2004.11.036

[11] 
Y. Hong, Z.P. Jiang, and G. Feng, “Finitetime inputtostate stability and applications to finitetime control design,” SIAM J. Control Optim., vol. 48, no. 7, pp. 4395–4418, Jul. 2010. doi: 10.1137/070712043

[12] 
Z. Zhu, Y. Xia, and M. Fu, “Attitude stabilization of rigid spacecraft with finitetime convergence,” Int. J. Robust Nonlinear Control, vol. 21, no. 6, pp. 686–702, Feb. 2011. doi: 10.1002/rnc.1624

[13] 
Y. Hong, “Finitetime stabilization and stabilizability of a class of controllable systems,” Syst. Control Lett., vol. 46, no. 2, pp. 231–236, Jul. 2002.

[14] 
A. Pal, S. Kamal, S. Nagar, B. Bandyopadhyay, and L. Fridman, “Design of controllers with arbitrary convergence time,” Automatica, vol. 112, p. 108710, Feb. 2020. doi: 10.1016/j.automatica.2019.108710

[15] 
Y. Li, K. Li, and S. Tong, “Finitetime adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 1, pp. 96–110, Jan. 2019. doi: 10.1109/TFUZZ.2018.2868898

[16] 
Y. Li, T. Yang, and S. Tong, “Adaptive neural networks finitetime optimal control for a class of nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4451–4460, Nov. 2020. doi: 10.1109/TNNLS.2019.2955438

[17] 
L. H. Kong, W. He, W. J. Yang, Q. Li, and O. Kaynak, “Fuzzy approximationbased finitetime control for a robot with actuator saturation under timevarying constraints of work space,” IEEE Trans. Cybern., vol. 51, no. 10, pp. 4873–4884, Oct. 2021. doi: 10.1109/TCYB.2020.2998837

[18] 
R. R. Nair, L. Behera, and S. Kumar, “Eventtriggered finitetime integral sliding mode controller for consensusbased formation of multirobot systems with disturbances,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 39–47, Jan. 2019. doi: 10.1109/TCST.2017.2757448

[19] 
J. Liu, Y. L. Zhang, H. Liu, Y. Yu, and C. Sun, “Robust eventtriggered control of secondorder disturbed leaderfollower mass: A nonsingular finitetime consensus approach,” Int. J. Robust Nonlinear Control, vol. 29, no. 13, pp. 4298–4314, Sep. 2019. doi: 10.1002/rnc.4599

[20] 
H. Wang and Q. X. Zhu, “Finitetime stabilization of highorder stochastic nonlinear systems in strictfeedback form,” Automatica, vol. 54, pp. 284–291, Apr. 2015. doi: 10.1016/j.automatica.2015.02.016

[21] 
A. Polyakov, “Nonlinear feedback design for fixedtime stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, Aug. 2012. doi: 10.1109/TAC.2011.2179869

[22] 
Z. Zuo and L. Tie, “A new class of finitetime nonlinear consensus protocols for multiagent systems,” Int. J. Control, vol. 87, no. 2, pp. 363–370, Feb. 2014. doi: 10.1080/00207179.2013.834484

[23] 
Z. Zuo and L. Tie, “Distributed robust finitetime nonlinear consensus protocols for multiagent systems,” Int. J. Syst. Sci., vol. 47, no. 6, pp. 1366–1375, Apr. 2016. doi: 10.1080/00207721.2014.925608

[24] 
J. J. Yu, S. H. Yu, J. Li, and Y. Yan, “Fixedtime stability theorem of stochastic nonlinear systems,” Int. J. Control, vol. 92, no. 9, pp. 2194–2200, Sep. 2019. doi: 10.1080/00207179.2018.1430900

[25] 
H. F. Li, C. D. Li, T. W. Huang, and D. Q. Ouyang, “Fixedtime stability and stabilization of impulsive dynamical systems,” J. Frankl. Inst.Eng. Appl. Math., vol. 354, pp. 8626–8644, Dec. 2017. doi: 10.1016/j.jfranklin.2017.09.036

[26] 
J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixedtime eventtriggered consensus for nonlinear multiagent systems without continuous communications,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 11, pp. 2221–2229, Nov. 2019. doi: 10.1109/TSMC.2018.2876334

[27] 
J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixedtime leader–follower consensus of networked nonlinear systems via event/selftriggered control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 5029–5037, Nov. 2020. doi: 10.1109/TNNLS.2019.2957069

[28] 
D. A. Rodrigo, G. David, J. Esteban, D. Juan, and D. Michael, “Enhancing the settling time estimation of a class of fixedtime stable systems,” Int. J. Robust Nonlinear Control, vol. 29, pp. 4135–4148, Aug. 2019. doi: 10.1002/rnc.4600

[29] 
X. Jin, “Adaptive fixedtime control for mimo nonlinear systems with asymmetric output constraints using universal barrier functions,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 3046–3053, Jul. 2019. doi: 10.1109/TAC.2018.2874877

[30] 
D. Y. Li, S. Z. Ge, and T. H. Lee, “Fixedtimesynchronized consensus control of multiagent systems,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 89–98, Mar. 2021. doi: 10.1109/TCNS.2020.3034523

[31] 
C. Hu, H. B. He, and H. J. Jiang, “Fixed/preassignedtime synchronization of complex networks via improving fixedtime stability,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 2882–2892, Jun. 2021. doi: 10.1109/TCYB.2020.2977934

[32] 
C. Hu, J. Yu, Z. H. Chen, H. J. Jiang, and T. W. Huang, “Fixedtime stability of dynamical systems and fixedtime synchronization of coupled discontinuous neural networks,” Neural Netw., vol. 89, pp. 74–83, May 2017. doi: 10.1016/j.neunet.2017.02.001

[33] 
F. Wang and G. Lai, “Fixedtime control design for nonlinear uncertain systems via adaptive method,” Syst. Control Lett., vol. 140, p. 104704, Jun. 2020. doi: 10.1016/j.sysconle.2020.104704

[34] 
J. Feng, J. Yu, C. D. Yang, and H. J. Jiang, “Nonseparation methodbased finite/fixedtime synchronization of fully complexvalued discontinuous neural networks,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3212–3223, Jun. 2021. doi: 10.1109/TCYB.2020.2980684

[35] 
G. J. Ji, C. Hu, J. Yu, and H. J. Jiang, “Finitetime and fixedtime synchronization of discontinuous complex networks: A unified control framework design,” J. Frankl. Inst.Eng. Appl. Math., vol. 355, pp. 4665–4685, Jul. 2018. doi: 10.1016/j.jfranklin.2018.04.026

[36] 
W. L. Lu, X. W. Liu, and T. Chen, “A note on finitetime and fixedtime stability,” Neural Netw., vol. 81, pp. 11–15, Sep. 2016. doi: 10.1016/j.neunet.2016.04.011

[37] 
Y. Shen and Y. Huang, “Uniformly observable and globally Lipschitzian nonlinear systems admit global finitetime observers,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp. 2621–2625, Nov. 2009. doi: 10.1109/TAC.2009.2029298

[38] 
Z. Zuo, Q.L. Han, B. Ning, X. Ge, and X.M. Zhang, “An overview of recent advances in fixedtime cooperative control of multiagent systems,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2322–2334, Jun. 2018. doi: 10.1109/TII.2018.2817248

[39] 
Z.Y. Sun, M.M. Yun, and T. Li, “A new approach to fast global finitetime stabilization of highorder nonlinear system,” Automatica, vol. 81, pp. 455–463, Jul. 2017. doi: 10.1016/j.automatica.2017.04.024

[40] 
A. Filippov, “Differential equations with discontinuous righthand side,” Dordrecht, The Netherlands: Kluwer, 1988.

[41] 
Z. Zuo, “Fixedtime stabilization of general linear systems with input delay,” J. Frankl. Inst.Eng. Appl. Math., vol. 356, pp. 4467–4477, May 2019. doi: 10.1016/j.jfranklin.2019.04.006

[42] 
Y. Orlov, “Finite time stability and robust control synthesis of uncertain switched systems,” SIAM J. Control Optim., vol. 43, no. 4, pp. 1253–1271, Jul. 2005.

[43] 
M. Basin, C. Panathula, and Y. Shtessel, “Adaptive uniform finite/fixedtime convergent secondorder slidingmode control,” Int. J. Control, vol. 89, no. 9, pp. 1777–1787, Aug. 2016. doi: 10.1080/00207179.2016.1184759

[44] 
Y.X. Li, “Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems,” Automatica, vol. 106, pp. 117–123, Aug. 2019. doi: 10.1016/j.automatica.2019.04.022

[45] 
S. Venkataraman and S. Gulati, “Terminal sliding modes: A new approach to nonlinear control synthesis,” Proc. 5th Int. Conf. Advanced Robotics, pp. 443–448, Jun. 1991.

[46] 
Z. Man, A. Paplinski, and H. R. Wu, “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators,” IEEE Trans. Autom. Control, vol. 39, no. 12, pp. 2464–2469, Dec. 1994. doi: 10.1109/9.362847

[47] 
X. Yu and Z. Man, “Fast terminal sliding mode control design for nonlinear dynamic systems,” IEEE Trans. Circuits Syst. IRegul. Pap., vol. 49, no. 2, pp. 261–264, Feb. 2002. doi: 10.1109/81.983876

[48] 
Y. Feng, X. Yu, and Z. Man, “Nonsingular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159–2167, Dec. 2002. doi: 10.1016/S00051098(02)001474

[49] 
A.M. Zou, K. Kumar, Z.G. Hou, and X. Liu, “Finitetime attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network,” IEEE Trans. Syst. Man Cybern. Part BCybern., vol. 41, no. 4, pp. 950–963, Aug. 2011. doi: 10.1109/TSMCB.2010.2101592

[50] 
S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finitetime control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no. 11, pp. 1957–1964, Nov. 2005. doi: 10.1016/j.automatica.2005.07.001

[51] 
G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second order sliding mode control,” IEEE Trans. Autom. Control, vol. 43, no. 2, pp. 241–246, Feb. 1998. doi: 10.1109/9.661074

[52] 
S. Mobayen, “Fast terminal sliding mode controller design for nonlinear secondorder systems with timevarying uncertainties,” Complexity, vol. 21, no. 2, pp. 239–244, Dec. 2015. doi: 10.1002/cplx.21600

[53] 
B. Hashtarkhani and M. Khosrowjerdi, “Neural adaptive fault tolerant control of nonlinear fractional order systems via terminal sliding mode approach,” J. Comput. Nonlinear Dyn., vol. 14, no. 3, pp. 1009–1011, Mar. 2019.

[54] 
Q. Zhang, C. Wang, X. Su, and D. Xu, “Observerbased terminal sliding mode control of nonaffine nonlinear systems: Finitetime approach,” J. Frankl. Inst.Eng. Appl. Math., vol. 355, no. 16, pp. 7985–8004, Nov. 2018. doi: 10.1016/j.jfranklin.2018.08.018

[55] 
S. Mobayen, “Adaptive global terminal sliding mode control scheme with improved dynamic surface for uncertain nonlinear systems,” Int. J. Control Autom. Syst., vol. 16, no. 4, pp. 1692–1700, Aug. 2018. doi: 10.1007/s1255501704738

[56] 
M. Corradini and A. Cristofaro, “Nonsingular terminal sliding mode control of nonlinear planar systems with global fixedtime stability guarantees,” Automatica, vol. 95, no. 9, pp. 561–565, Sep. 2018.

[57] 
G. Sun, Z. Ma, and J. Yu, “Discretetime fractional order terminal sliding mode tracking control for linear motor,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3386–3394, Apr. 2018. doi: 10.1109/TIE.2017.2748045

[58] 
T. Zeng, X. Ren, and Y. Zhang, “Fixedtime sliding mode control and highgain nonlinearity compensation for dualmotor driving system,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4090–4098, Jun. 2020. doi: 10.1109/TII.2019.2950806

[59] 
J. Ni, L. Liu, C. Liu, and X. Hu, “Fractional order fixedtime nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems,” Nonlinear Dyn., vol. 89, pp. 2065–2083, Aug. 2017. doi: 10.1007/s1107101735706

[60] 
Z. Zuo, “Nonsingular fixedtime terminal sliding mode control of nonlinear systems,” IET Contr. Theory Appl., vol. 9, no. 4, pp. 545–552, Feb. 2015. doi: 10.1049/ietcta.2014.0202

[61] 
J. Ni, L. Liu, C. Liu, X. Hu, and S. Li, “Fast fixedtime nonsingular terminal sliding mode control and its application to chaos suppression in power system,” IEEE Trans. Circuits Syst. ⅡExpress Briefs, vol. 64, no. 2, pp. 151–155, Feb. 2017. doi: 10.1109/TCSII.2016.2551539

[62] 
Z. Zhu, Y. Xia, and M. Fu, “Adaptive sliding mode control for attitude stabilization with actuator saturation,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4898–4907, Oct. 2011. doi: 10.1109/TIE.2011.2107719

[63] 
J. Liu and F. Sun, “Research and development on theory and algorithms of sliding mode control,” Control Theory and Appl., vol. 24, no. 3, pp. 407–418, Oct. 2007.

[64] 
Kachroo and M. Tomizuka, “Chattering reduction and error convergence in the sliding mode control of a class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 41, no. 7, pp. 1063–1068, Jul. 1996. doi: 10.1109/9.508917

[65] 
S. Chung and C. Lin, “A transformed lure problem for sliding mode control and chattering reduction,” IEEE Trans. Autom. Control, vol. 44, no. 3, pp. 563–568, Mar. 1999. doi: 10.1109/9.751351

[66] 
S. Ding, C. Qian, S. Li, and Q. Li, “Global stabilization of a class of uppertriangular systems with unbounded or uncontrollable linearizations,” Int. J. Robust Nonlinear Control, vol. 21, no. 3, pp. 271–294, Feb. 2011. doi: 10.1002/rnc.1591

[67] 
Z. Sun, L. Xue, and K. Zhang, “A new approach to finitetime adaptive stabilization of highorder uncertain nonlinear system,” Automatica, vol. 58, no. 8, pp. 60–66, Aug. 2015.

[68] 
M. Cai, Z. Xiang, and J. Guo, “Adaptive finitetime control for uncertain nonlinear systems with application to mechanical systems,” Nonlinear Dyn., vol. 84, no. 2, pp. 943–958, Apr. 2016. doi: 10.1007/s110710152541z

[69] 
K. Zhang and X. Zhang, “Finitetime stabilisation for highorder nonlinear systems with loworder and highorder nonlinearities,” Int. J. Control, vol. 88, no. 8, pp. 1576–1585, Aug. 2015. doi: 10.1080/00207179.2015.1011697

[70] 
J. Fu, R. Ma, and T. Chai, “Global finitetime stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers,” Automatica, vol. 54, no. 4, pp. 360–373, Apr. 2015.

[71] 
J. Fu, R. Ma, and T. Chai, “Adaptive finitetime stabilization of a class of uncertain nonlinear systems via logicbased switchings,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5998–6003, Nov. 2017. doi: 10.1109/TAC.2017.2705287

[72] 
F. Cao, Y. Wu, and Y. Liu, “Finitetime stabilization for a class of switched stochastic nonlinear systems with deadzone input nonlinearities,” Int. J. Robust Nonlinear Control, vol. 28, no. 9, pp. 3239–3257, Jun. 2018. doi: 10.1002/rnc.4078

[73] 
Z. Sun, Y. Shao, and C. Chen, “Fast finitetime stability and its application in adaptive control of highorder nonlinear system,” Automatica, vol. 106, no. 5, pp. 339–348, Aug. 2019.

[74] 
J. Wu, W. Chen, and J. Li, “Global finitetime adaptive stabilization for nonlinear systems with mutiple unknown control directions,” Automatica, vol. 69, no. 7, pp. 298–307, Jul. 2016.

[75] 
J. Huang, C. Wen, W. Wang, and Y. Song, “Design of adaptive finitetime controllers for nonlinear uncertain systems based on given transient specifications,” Automatica, vol. 67, no. 7, pp. 395–404, Jul. 2016.

[76] 
C. Qian and J. Li, “Global finitetime stabilization by output feedback for planar systems without observable linearization,” IEEE Trans. Autom. Control, vol. 50, no. 6, pp. 885–890, Jun. 2005. doi: 10.1109/TAC.2005.849253

[77] 
J. Li and C. Qian, “Global finitetime stabilization by dynamic output feedback for a class of continuous nonlinear systems,” IEEE Trans. Autom. Control, vol. 51, no. 5, pp. 879–884, May 2006. doi: 10.1109/TAC.2006.874991

[78] 
Y. Shen and X. Xia, “Semiglobal finitetime observers for nonlinear systems,” Automatica, vol. 44, no. 12, pp. 3152–3156, Dec. 2008. doi: 10.1016/j.automatica.2008.05.015

[79] 
S. Bhat and D. Bernstein, “Finitetime stability of homogeneous systems,” in Proc. American Control Conf., Aug. 1997, pp. 2513–2514.

[80] 
Y. Hong, J. Huang, and Y. Xu, “On an output feedback finitetime stabilization problem,” IEEE Trans. Autom. Control, vol. 46, no. 2, pp. 305–309, Feb. 2001. doi: 10.1109/9.905699

[81] 
S. Bhat and D. Bernstein, “Geometric homogeneity with applications to finitetime stability,” Math. Control Signal Syst., vol. 17, no. 2, pp. 101–127, Jun. 2005. doi: 10.1007/s004980050151x

[82] 
Y. Orlov, “Finite time stability of homogeneous switched systems,” in Proc. 42nd IEEE Conf. Decision and Control, Mar. 2003, pp. 4271–4276

[83] 
J. Yin, S. Khoo, and Z. Man, “Finitetime stability theorems of homogeneous stochastic nonlinear systems,” Syst. Control Lett., vol. 100, no. 2, pp. 6–13, Feb. 2017.

[84] 
Y. Shen, Y. Huang, and J. Gu, “Global finitetime observer for Lipschitz nonlinear systems,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 418–424, Feb. 2011. doi: 10.1109/TAC.2010.2088610

[85] 
H. Du, C. Qian, S. Yang, and S. Li, “Recursive design of finitetime convergent observers for a class of timevarying nonlinear systems,” Automatica, vol. 49, no. 2, pp. 601–609, Feb. 2013. doi: 10.1016/j.automatica.2012.11.036

[86] 
Z. Zhang, X. Liu, Y. Liu, C. Lin, and B. Chen, “Fixedtime almost disturbance decoupling of nonlinear timevarying systems with multiple disturbances and deadzone input,” Inf. Sci., vol. 450, pp. 267–283, Jun. 2018. doi: 10.1016/j.ins.2018.03.044

[87] 
B. Jiang, C. Li, S. Hou, and G. Ma, “Fixedtime attitude tracking control for spacecraft based on adding power integrator technique,” Int. J. Robust Nonlinear Control, vol. 30, no. 6, pp. 2515–2532, Apr. 2020. doi: 10.1002/rnc.4897

[88] 
D. Wu, H. Du, G. Wen, and J. Lü, “Fixedtime synchronization control for a class of masterslave systems based on homogeneous method,” IEEE Trans. Circuits Syst. ⅡExpress Briefs, vol. 66, no. 9, pp. 1547–1551, Sep. 2019. doi: 10.1109/TCSII.2018.2886574

[89] 
Y. Cao, C. Wen, S. Tan, and Y. Song, “Fixedtime synchronization control for a class of masterslave systems based on homogeneous method prespecifiable fixedtime control for a class of uncertain nonlinear systems in strictfeedback form,” Int. J. Robust Nonlinear Control, vol. 30, no. 3, pp. 1203–1222, Jul. 2020. doi: 10.1002/rnc.4820

[90] 
Z. Zhang and Y. Wu, “Fixedtime regulation control of uncertain nonholonomic systems and its applications,” Int. J. Control, vol. 90, no. 7, pp. 1327–1344, Sep. 2017. doi: 10.1080/00207179.2016.1205758

[91] 
B. Tian, Z. Zuo, X. Yan, and H. Wang, “A fixedtime output feedback control scheme for double integrator systems,” Automatica, vol. 80, pp. 17–24, Jun. 2017. doi: 10.1016/j.automatica.2017.01.007

[92] 
Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Timevarying feedback for regulation of normalform nonlinear systems in prescribed finite time,” Automatica, vol. 83, no. 9, pp. 243–251, Sep. 2017.

[93] 
Y. Wang and Y. Song, “Leaderfollowing control of highorder multiagent systems under directed graphs: Prespecified finite time approach,” Automatica, vol. 87, no. 1, pp. 113–120, Jan. 2018.

[94] 
X. Chen and X. Zhang, “Outputfeedback control strategies of lowertriangular nonlinear nonholonomic systems in any prescribed finite time,” Int. J. Robust Nonlinear Control, vol. 29, no. 4, pp. 904–918, Mar. 2019. doi: 10.1002/rnc.4413

[95] 
Y. Liu, X. Liu, Y. Jing, and Z. Zhang, “A novel finitetime adaptive fuzzy tracking control scheme for nonstrictfeedback systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 4, pp. 646–658, Apr. 2019. doi: 10.1109/TFUZZ.2018.2866264

[96] 
Y. Liu, X. Liu, Y. Jing, X. Chen, and J. Qiu, “Direct adaptive preassigned finitetime control with timedelay and quantized input using neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 4, pp. 1222–1231, Apr. 2020. doi: 10.1109/TNNLS.2019.2919577

[97] 
Y. Liu, X. Liu, and Y. Jing, “Adaptive practical preassigned finitetime stability for a class of purefeedback systems with full state constraints,” Int. J. Robust Nonlinear Control, vol. 29, no. 4, pp. 2978–2994, Jul. 2019.

[98] 
L. Chang, Y. Liu, Y. Jing, X. Chen, and J. Qiu, “Semiglobally practical finitetime H_{∞} control of TCSC model of power systems based on dynamic surface control,” IEEE Access, vol. 8, pp. 10061–10069, Jan. 2020. doi: 10.1109/ACCESS.2020.2964265

[99] 
Y. Liu, Y. Jing, and X. Chen, “Adaptive neural practically finitetime congestion control for TCP/AQM network,” Neurocomputing, vol. 351, pp. 26–32, Jul. 2019. doi: 10.1016/j.neucom.2019.03.022

[100] 
M. Defoort, A. Polyakov, G. Demesure, M. Djemai, and K. Veluvolu, “Leaderfollower fixedtime consensus for multiagent systems with unknown nonlinear inherent dynamics,” IET Contr. Theory Appl., vol. 9, no. 14, pp. 2165–2170, Sep. 2015. doi: 10.1049/ietcta.2014.1301

[101] 
R. AldanaLopez, D. GomezGutierrez, M. Defoort, J. SanchezTorres, and A. MunozVazquez, “A class of robust consensus algorithm with predefinedtime convergence under switching topologies,” Int. J. Robust Nonlinear Control, vol. 29, no. 17, pp. 6179–6198, Nov. 2019. doi: 10.1002/rnc.4715

[102] 
E. Arabi, T. Yucelen, and J. Singler, “Finitetime distributed control with time transformation,” Int. J. Robust Nonlinear Control, vol. 31, no. 1, pp. 107–130, Jan. 2021. doi: 10.1002/rnc.5264

[103] 
J.X. Zhang and G.H. Yang, “Adaptive fuzzy faulttolerant control of uncertain EulerLagrange systems with process faults,” IEEE Trans. Fuzzy Syst., vol. 28, no. 10, pp. 2619–2630, Oct. 2020. doi: 10.1109/TFUZZ.2019.2945256

[104] 
G. Chen, Y. Yue, and Y. Song, “Finitetime cooperativetracking control for networked EulerLagrange systems,” IET Contr. Theory Appl., vol. 7, no. 11, pp. 1487–1497, Jul. 2013. doi: 10.1049/ietcta.2013.0205

[105] 
Y. Zhao, Z. Duan, and G. Wen, “Distributed finitetime tracking of multiple EulerLagrange systems without velocity measurements,” Int. J. Robust Nonlinear Control, vol. 25, no. 11, pp. 1688–1703, Jul. 2015. doi: 10.1002/rnc.3170

[106] 
E. CruzZavala, E. Nuno, and J. Moreno, “On the finitetime regulation of EulerLagrange systems without velocity measurements,” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4309–4316, Dec. 2018. doi: 10.1109/TAC.2018.2817232

[107] 
W. He, C. Xu, Q.L. Han, F. Qian, and Z. Lang, “Finitetime L2 leaderfollower consensus of networked EulerLagrange systems with external disturbances,” IEEE Trans. Syst. Man Cybern. Syst., vol. 48, no. 11, pp. 1920–1928, Nov. 2018. doi: 10.1109/TSMC.2017.2774251

[108] 
L i, Z. Song, Z. Wang, and W. Liu, “Fixedtime consensus for disturbed multiple EulerLagrange systems with connectivity preservation and quantized input,” Appl. Math. Comput., vol. 380, p. 125303, Sep. 2020.

[109] 
S. Li, H. Du, and X. Lin, “Finitetime consensus algorithm for multiagent systems with doubleintegrator dynamics,” Automatica, vol. 47, pp. 1706–1712, Aug. 2011. doi: 10.1016/j.automatica.2011.02.045

[110] 
Y. Zheng and L. Wang, “Finitetime consensus of heterogeneous multiagent systems with and without velocity measurements,” Syst. Control Lett., vol. 61, no. 8, pp. 871–878, Aug. 2012. doi: 10.1016/j.sysconle.2012.05.009

[111] 
Y. Zhao, Z. Duan, G. Wen, and Y. Zhang, “Distributed finitetime tracking control for multiagent systems: An observerbased approach,” Syst. Control Lett., vol. 62, pp. 22–28, Jan. 2013. doi: 10.1016/j.sysconle.2012.10.012

[112] 
H. Du, Y. He, and Y. Cheng, “Finitetime synchronization of a class of secondorder nonlinear multiagent systems using output feedback control,” IEEE Trans. Circuits Syst. IRegul. Pap., vol. 61, no. 6, pp. 1778–1788, Jun. 2014. doi: 10.1109/TCSI.2013.2295012

[113] 
S. Yu and X. Long, “Finitetime consensus for secondorder multiagent systems with disturbances by integral sliding mode,” Automatica, vol. 54, pp. 158–165, Apr. 2015. doi: 10.1016/j.automatica.2015.02.001

[114] 
Z. Zuo, “Nonsingular fixedtime consensus tracking for secondorder multiagent networks,” Automatica, vol. 54, pp. 305–309, Nov. 2015. doi: 10.1016/j.automatica.2015.01.021

[115] 
J. Fu and J. Wang, “Fixedtime coordinated tracking for secondorder multiagent systems with bounded input uncertainties,” Syst. Control Lett., vol. 93, pp. 1–12, Jul. 2016. doi: 10.1016/j.sysconle.2016.03.006

[116] 
Z. Zuo, B. Tian, M. Defoort, and Z. Ding, “Fixedtime consensus tracking for multiagent systems with highorder integrator dynamics,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 563–570, Feb. 2018. doi: 10.1109/TAC.2017.2729502

[117] 
Q. Xiao, H. Liu, X. Wang, and Y. Huang, “A note on the fixedtime bipartite flocking for nonlinear multiagent systems,” Appl. Math. Lett., vol. 99, p. 105973, Jan. 2020. doi: 10.1016/j.aml.2019.07.004

[118] 
Z. Y. Zuo, M. Defoort, B. L. Tian, and Z. T. Ding, “Distributed consensus observer for multiagent systems with highorder integrator dynamics,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1771–1778, Apr. 2020. doi: 10.1109/TAC.2019.2936555

[119] 
T. Zhang, Q. Li, C.S. Zhang, H.W. Liang, P. Li, T.M. Wang, S. Li, Y.L. Zhu, and C. Wu, “Current trends in the development of intelligent unmanned autonomous systems,” Front. Inform. Technol. Elect. Eng., vol. 18, no. 1, pp. 68–85, Jan. 2017. doi: 10.1631/FITEE.1601650

[120] 
C. Fu, W. Hong, H. Lu, L. Zhang, X. Guo, and Y. Tian, “Adaptive robust backstepping attitude control for a multirotor unmanned aerial vehicle with timevarying output constraints,” Aerosp. Sci. Technol., vol. 78, pp. 593–603, Jul. 2018. doi: 10.1016/j.ast.2018.05.021

[121] 
F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, “Robust backstepping slidingmode control and observerbased fault estimation for a quadrotor UAV,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 5044–5056, Aug. 2016.

[122] 
Z. Yu, Z. Liu, Y. Zhang, Y. Qu, and C.Y. Su, “Distributed finitetime faulttolerant containment control for multiple unmanned aerial vehicles,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2077–2091, Jun. 2020. doi: 10.1109/TNNLS.2019.2927887

[123] 
N. Zhang, W. Gai, M. Zhong, and J. Zhang, “A fast finitetime convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance,” Aerosp. Sci. Technol., vol. 86, pp. 204–214, Mar. 2019. doi: 10.1016/j.ast.2019.01.021

[124] 
C. Ma and W. Wu, “Finitetime formation of unmanned aerial vehicles with switching topologies and disturbances: An average dwell time approach,” Int. J. Aerosp. Eng., vol. 2019, pp. 1–12, Apr. 2019.

[125] 
D. Wang, Q. Zong, B. Tian, H. Lu, and J. Wang, “Adaptive finitetime reconfiguration control of unmanned aerial vehicles with a moving leader,” Nonlinear Dyn., vol. 95, pp. 1099–1116, Jan. 2019. doi: 10.1007/s110710184618y

[126] 
C. Fu, Y. Tian, H. Huang, L. Zhang, and C. Peng, “Finitetime trajectory tracking control for a 12rotor unmanned aerial vehicle with input saturation,” ISA Trans., vol. 81, pp. 52–62, Oct. 2018. doi: 10.1016/j.isatra.2018.08.005

[127] 
X. Lin, S. Huang, W. Zhang, and S. Li, “Finitetime feedback stabilization of a class of inputdelay systems with saturating actuators via digital control,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1281–1290, Sep. 2019. doi: 10.1109/JAS.2019.1911525

[128] 
L. Zhang, Y. Xia, G. Shen, and B. Cui, “Fixedtime attitude tracking control for spacecraft based on fixedtime extended state observer,” Sci. ChinaInf. Sci., vol. 64, no. 11, pp. 1–17, Nov. 2021. doi: 10.1007/s1143102118220

[129] 
J. Ghommam, M. Saad, S. Wright, and Q. Zhu, “Relay manoeuvre based fixedtime synchronized tracking control for UAV transport system,” Aerosp. Sci. Technol., vol. 103, p. 105887, Aug. 2020. doi: 10.1016/j.ast.2020.105887

[130] 
L. Hao, X. Qi, and Z. Yang, “Topology optimised fixedtime consensus for multiUAV system in a multipath fading channel,” IET Commun., vol. 14, no. 11, pp. 1730–1738, Jul. 2020. doi: 10.1049/ietcom.2019.0699

[131] 
J. Chen, C. Hua, and X. Guan, “Image based fixed time visual servoing control for the quadrotor UAV,” IET Contr. Theory Appl., vol. 13, no. 18, pp. 3117–3123, Dec. 2019. doi: 10.1049/ietcta.2019.0032

[132] 
S.L. Dai, S. He, X. Chen, and X. Jin, “Adaptive leaderfollower formation control of nonholonomic mobile robots with prescribed transient and steadystate performance,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 3662–3671, Jun. 2020. doi: 10.1109/TII.2019.2939263

[133] 
D. Wu, Y. Cheng, H. Du, W. Zhu, and M. Zhu, “Finitetime output feedback tracking control for a nonholonomic wheeled mobile robot,” Aerosp. Sci. Technol., vol. 78, pp. 574–579, Jul. 2018. doi: 10.1016/j.ast.2018.05.005

[134] 
Y. Cheng, R. Jia, H. Du, G. Wen, and W. Zhu, “Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback,” Int. J. Robust Nonlinear Control, vol. 28, pp. 2082–2096, Apr. 2018. doi: 10.1002/rnc.4002

[135] 
H. Du, G. Wen, y. Cheng, Y. He, and R. Jia, “Distributed finitetime cooperative control of multiple highorder nonholonomic mobile robots,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 12, pp. 2998–3006, Dec. 2017. doi: 10.1109/TNNLS.2016.2610140

[136] 
Y. Zhu and F. Zhu, “Distributed adaptive longitudinal control for uncertain thirdorder vehicle platoon in a networked environment,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9183–9197, Oct. 2018. doi: 10.1109/TVT.2018.2863284

[137] 
Y. Li, C. Tang, K. Li, S. Peeta, X. He, and Y. Wang, “Nonlinear finitetime consensusbased connected vehicle platoon control under fixed and switching communication topologies,” Transp. Res. Pt. CEmerg. Technol., vol. 93, pp. 525–543, Aug. 2018. doi: 10.1016/j.trc.2018.06.013

[138] 
T. Yang, Y. Yuan, K. Li, J. Goncalves, and K. Johansson, “Finitetime road grade computation for a vehicle platoon,” in Proc. 53rd IEEE Conf. Decision and Control, Feb. 2015, pp. 6105–6110.

[139] 
J. Gong, Y. Zhao, and Z. Lu, “Finitetime bidirectional platoon control of interconnected vehicles with multiple disturbances,” in Proc. 36th Chinese Control Conf., Sep. 2017, pp. 9472–9477.

[140] 
Z. Peng, J. Wang, D. Wang, and Q.L. Han, “An overview of recent advances in coordinated control of multiple autonomous surface vehicles,” IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 732–745, Feb. 2021. doi: 10.1109/TII.2020.3004343

[141] 
N. Wang, H. Karimi, H. Li, and S.F. Su, “Accurate trajectory tracking of disturbed surface vehicles: A finitetime control approach,” IEEEASME Trans. Mechatron, vol. 24, no. 3, pp. 1064–1074, Jun. 2019. doi: 10.1109/TMECH.2019.2906395

[142] 
N. Wang and C. Ahn, “Hyperbolictangent LOS guidancebased finitetime path following of underactuated marine vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8566–8575, Oct. 2020. doi: 10.1109/TIE.2019.2947845

[143] 
N. Wang and Z. Deng, “Finitetime fault estimator based faulttolerance control for a surface vehicle with input saturations,” IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1172–1181, Feb. 2020. doi: 10.1109/TII.2019.2930471

[144] 
X. Jin, “Fault tolerant finitetime leaderfollower formation control for autonomous surface vessels with LOS range and angle constraints,” Automatica, vol. 68, pp. 228–236, Jun. 2016. doi: 10.1016/j.automatica.2016.01.064

[145] 
Z. Shen, Y. Wang, H. Yu, and C. Guo, “Finitetime adaptive tracking control of marine vehicles with complex unknowns and input saturation,” Ocean Eng., vol. 198, p. 106980, Feb. 2020. doi: 10.1016/j.oceaneng.2020.106980

[146] 
Z. Yan, H. Yu, W. Zhang, B. Li, and J. Zhou, “Globally finitetime stable tracking control of underactuated uuvs,” Ocean Eng., vol. 107, pp. 132–146, Oct. 2015. doi: 10.1016/j.oceaneng.2015.07.039

[147] 
J.X. Zhang and G.H. Yang, “Faulttolerant fixedtime trajectory tracking control of autonomous surface vessels with specified accuracy,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4889–4899, Jun. 2020. doi: 10.1109/TIE.2019.2931242

[148] 
Z. Gao and G. Guo, “Commandfiltered fixedtime trajectory tracking control of surface vehicles based on a disturbance observer,” Int. J. Robust Nonlinear Control, vol. 29, pp. 4348–4365, Sep. 2019. doi: 10.1002/rnc.4628

[149] 
Z. Gao and G. Guo, “Fixedtime sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, Mar. 2020. doi: 10.1109/JAS.2020.1003057

[150] 
J. Zhang, S. Yu, and Y. Yan, “Fixedtime output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties,” ISA Trans., vol. 93, pp. 145–155, Oct. 2019. doi: 10.1016/j.isatra.2019.03.007

[151] 
B. L. Tian, L. H. Liu, H. C. Lu, Z. Y. Zuo, Q. Zong, and Y. Zhang, “Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2567–2577, Mar. 2018. doi: 10.1109/TIE.2017.2739700

[152] 
H. H. Pan and W. C. Sun, “Nonlinear output feedback finitetime control for vehicle active suspension systems,” IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2073–2082, Apr. 2019. doi: 10.1109/TII.2018.2866518

[153] 
H. H. Pan, W. C. Sun, H. J. Gao, and J. Y. Yu, “Finitetime stabilization for vehicle active suspension systems with hard constraints,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2663–2672, Oct. 2015. doi: 10.1109/TITS.2015.2414657

[154] 
R. Kuma, A. K. Behera, and B. Bandyopadhya, “Robust finitetime tracking of Stewart platform: A supertwisting like observerbased forward kinematics solution,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3776–3785, May 2017. doi: 10.1109/TIE.2017.2652341

[155] 
L. Wang, T. Dong, and M.F. Ge, “Finitetime synchronization of memristor chaotic systems and its application in image encryption,” Appl. Math. Comput., vol. 347, pp. 293–305, Apr. 2019.

[156] 
T. Binazadeh and H. Gholami, “Finitetime robust passive control of uncertain discrete timedelay systems using output feedback: Application on Chuas circuit,” Circuits Syst. Signal Process., vol. 39, pp. 2349–2375, May 2020. doi: 10.1007/s0003401901275y

[157] 
H. Min, S. Xu, B. Zhang, and D. Na, “Practically finitetime control for nonlinear systems with mismatching conditions and application to a robot system,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 2, pp. 480–489, Feb. 2020. doi: 10.1109/TSMC.2017.2748227

[158] 
S. Nateghi, Y. Shtessel, and C. Edwards, “Cyberattacks and faults reconstruction using finite time convergent observation algorithms: Electric power network application,” J. Frankl. Inst.Eng. Appl. Math., vol. 357, no. 1, pp. 179–205, Jan. 2020. doi: 10.1016/j.jfranklin.2019.10.002

[159] 
X. Chu, Z. Peng, G. Wen, and A. Rahmani, “Robust fixedtime consensus tracking with application to formation control of unicycles,” IET Contr. Theory Appl., vol. 12, no. 1, pp. 53–59, Jan. 2018. doi: 10.1049/ietcta.2017.0319

[160] 
F. Wang, B. Chen, Y. Sun, Y. Gao, and C. Lin, “Finitetime fuzzy control of stochastic nonlinear systems,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2617–2626, Jun. 2020. doi: 10.1109/TCYB.2019.2925573

[161] 
F. Wang, Z. Liu, Y. Zhang, and C. Chen, “Adaptive finitetime control of stochastic nonlinear systems with actuator failures,” Fuzzy Sets Syst., vol. 374, pp. 170–183, Nov. 2019. doi: 10.1016/j.fss.2018.12.005

[162] 
F. Wang and X. Zhang, “Adaptive finite time control of nonlinear systems under timevarying actuator failures,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 9, pp. 1845–1852, Sep. 2019. doi: 10.1109/TSMC.2018.2868329

[163] 
W. Lv and F. Wang, “Finitetime adaptive fuzzy tracking control for a class of nonlinear systems with unknown hysteresis,” Int. J. Fuzzy Syst., vol. 20, pp. 782–790, Mar. 2018. doi: 10.1007/s4081501703813

[164] 
F. Wang, B. Chen, C. Lin, J. Zhang, and X. Meng, “Adaptive neural network finitetime output feedback control of quantized nonlinear systems,” IEEE Trans. Cybern., vol. 48, no. 6, pp. 1839–1848, Jun. 2018. doi: 10.1109/TCYB.2017.2715980

[165] 
L. Zhao, J. Yu, C. Lin, and Y. Ma, “Adaptive neural consensus tracking for nonlinear multiagent systems using finitetime command filtered backstepping,” IEEE Trans. Syst. Man Cybern. Syst., vol. 48, no. 11, pp. 2003–2012, Nov. 2018. doi: 10.1109/TSMC.2017.2743696

[166] 
J. Yu, L. Zhao, H. Yu, C. Lin, and W. Dong, “Fuzzy finitetime command filtered control of nonlinear systems with input saturation,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2378–2387, Aug. 2018. doi: 10.1109/TCYB.2017.2738648

[167] 
J. Yu, S hi, and L. Zhao, “Finitetime command filtered backstepping control for a class of nonlinear systems,” Automatica, vol. 92, pp. 173–180, Jun. 2018. doi: 10.1016/j.automatica.2018.03.033

[168] 
C.H. Zhang and G.H. Yang, “Eventtriggered practical finitetime output feedback stabilization of a class of uncertain nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 29, pp. 3078–3092, Jul. 2019. doi: 10.1002/rnc.4537

[169] 
Y. Liu, X. Liu, Y. Jing, and Z. Zhang, “Semiglobally practical finitetime stability for uncertain nonlinear systems based on dynamic surface control,” Int. J. Control, vol. 94, no. 2, pp. 476–485, Feb. 2021. doi: 10.1080/00207179.2019.1598579

[170] 
Y. Liu and Y. Jing, “Practical finitetime almost disturbance decoupling strategy for uncertain nonlinear systems,” Nonlinear Dyn., vol. 95, pp. 117–128, Jan. 2019. doi: 10.1007/s110710184554x

[171] 
M. Cai and Z. Xiang, “Adaptive practical finitetime stabilization for uncertain nonstrict feedback nonlinear systems with input nonlinearity,” IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 7, pp. 1668–1678, Jul. 2017. doi: 10.1109/TSMC.2017.2660761

[172] 
W. Sun and X. Lv, “Practical finitetime fuzzy control for Hamiltonian systems via adaptive eventtriggered approach,” Int. J. Fuzzy Syst., vol. 22, pp. 35–45, Feb. 2020. doi: 10.1007/s40815019007730

[173] 
Z. Wang and J. Wang, “A practical distributed finitetime control scheme for power system transient stability,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3320–3331, Sep. 2020. doi: 10.1109/TPWRS.2019.2904729

[174] 
C. Lu, Y. Pan, Y. Liu, and H. Li, “Adaptive fuzzy finitetime faulttolerant control of nonlinear systems with state constraints and input quantization,” Int. J. Adapt. Control Signal Process., vol. 34, no. 9, pp. 1199–1219, Sep. 2020. doi: 10.1002/acs.3146

[175] 
H. Li, S. Zhao, W. He, and R. Lu, “Adaptive finitetime tracking control of full states constrained nonlinear systems with deadzone,” Automatica, vol. 100, pp. 99–107, Feb. 2019. doi: 10.1016/j.automatica.2018.10.030

[176] 
G. Dong, H. Li, H. Ma, and R. Lu, “Finitetime consensus tracking neural network FTC of multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 653–662, Feb. 2021. doi: 10.1109/TNNLS.2020.2978898

[177] 
D u, H. Liang, S. Zhao, and C. Ahn, “Neuralbased decentralized adaptive finitetime control for nonlinear largescale systems with timevarying output constraints,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 5, pp. 3136–3147, May 2021. doi: 10.1109/TSMC.2019.2918351

[178] 
H. Wang, W. Bai, and X. Liu, “Finitetime adaptive faulttolerant control for nonlinear systems with multiple faults,” IEEE/CAA J. Autom. Sinica, vol. 6, pp. 1417–1427, Nov. 2019. doi: 10.1109/JAS.2019.1911765

[179] 
Y. Wu, Y. Pan, M. Chen, and H. Li, “Quantized adaptive finitetime bipartite nn tracking control for stochastic multiagent systems,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 2870–2881, Jun. 2021. doi: 10.1109/TCYB.2020.3008020

[180] 
D u, Y. Pan, H. Li, and H.K. Lam, “Nonsingular finitetime eventtriggered fuzzy control for largescale nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2088–2099, Aug. 2021. doi: 10.1109/TFUZZ.2020.2992632

[181] 
J. Liu, Y. Yu, H. He, and C. Sun, “Teamtriggered practical fixedtime consensus of doubleintegrator agents with uncertain disturbance,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3263–3272, Jun. 2021. doi: 10.1109/TCYB.2020.2999199

[182] 
G. Chen, Y. Yang, and F. Deng, “On practical fixedtime stability of discretetime impulsive switched nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 30, no. 17, pp. 7822–7834, Nov. 2020. doi: 10.1002/rnc.5216

[183] 
Y. Wu and Z. Wang, “Fuzzy adaptive practical fixedtime consensus for secondorder nonlinear multiagent systems under actuator faults,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1150–1162, Mar. 2021. doi: 10.1109/TCYB.2019.2963681

[184] 
B. Ning, Q.L. Han, and Z. Zuo, “Practical fixedtime consensus for integratortype multiagent systems: A time base generator approach,” Automatica, vol. 105, pp. 406–414, Jul. 2019. doi: 10.1016/j.automatica.2019.04.013

[185] 
H. Yang and D. Ye, “Timevarying formation tracking control for highorder nonlinear multiagent systems in fixedtime framework,” Appl. Math. Comput., vol. 377, p. 125119, Jul. 2020.

[186] 
Y. Pan, D u, H. Xue, and H.K. Lam, “Singularityfree fixedtime fuzzy control for robotic systems with userdefined performance,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2388–2398, Aug. 2021. doi: 10.1109/TFUZZ.2020.2999746

[187] 
F. Cao, Y. Wu, and Z. Zhang, “Global fixedtime stabilization of switched nonlinear systems: A timevarying scaling transformation approach,” IEEE Trans. Circuits Syst. ⅡExpress Briefs, vol. 66, no. 11, pp. 1890–1894, Nov. 2019. doi: 10.1109/TCSII.2018.2890556

[188] 
D. Ba, Y.X. Li, and S. Tong, “Fixedtime adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems,” Neurocomputing, vol. 363, pp. 273–280, Oct. 2019. doi: 10.1016/j.neucom.2019.06.063

[189] 
L. Hu, Z. Wang, Q.L. Han, and X. Liu, “State estimation under false data injection attacks: Security analysis and system protection,” Automatica, vol. 87, pp. 176–183, Jan. 2018. doi: 10.1016/j.automatica.2017.09.028

[190] 
D. Ding, Z. Wang, Q.L. Han, and G. Wei, “Security control for discretetime stochastic nonlinear systems subject to deception attacks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 48, no. 5, pp. 779–789, May 2018. doi: 10.1109/TSMC.2016.2616544

[191] 
D. Yao, H. Li, R. Lu, and Y. Shi, “Distributed sliding mode tracking control of secondorder nonlinear multiagent systems: An eventtriggered approach,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3892–3902, Sep. 2020. doi: 10.1109/TCYB.2019.2963087

[192] 
H. Ma, H. Li, R. Lu, and T. Huang, “Adaptive eventtriggered control for a class of nonlinear systems with periodic disturbances,” Sci. ChinaInf. Sci., vol. 63, no. 5, p. 150212, Mar. 2020. doi: 10.1007/s1143201926801

[193] 
G. Dong, L. Cao, D. Yao, H. Li, and R. Lu, “Adaptive attitude control for multiMUAV systems with output deadzone and actuator fault,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1567–1575, Sep. 2021. doi: 10.1109/JAS.2020.1003605

[194] 
G. Lin, H. Li, H. Ma, D. Yao, and R. Lu, “Humanintheloop consensus control for nonlinear multiagent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 111–122, Jan. 2022. doi: 10.1109/JAS.2020.1003596
