IEEE/CAA Journal of Automatica Sinica
Citation:  X. Lyu and Z. Lin, “PID control of planar nonlinear uncertain systems in the presence of actuator saturation,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 90–98, Jan. 2022. doi: 10.1109/JAS.2021.1004281 
[1] 
K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers. Princeton, NJ: Princeton University Press, 2008.

[2] 
K. J. Åström and T. Hägglund, “The future of PID control,” Control Eng. Pract., vol. 9, no. 11, pp. 1163–1175, Nov. 2001. doi: 10.1016/S09670661(01)000624

[3] 
A. Behera, T. K. Panigrahi, P. K. Ray, and A. K. Sahoo, “A novel cascaded PID controller for automatic generation control analysis with renewable sources,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1438–1451, Nov. 2019. doi: 10.1109/JAS.2019.1911666

[4] 
H. B. Gu, P. Liu, J. H. Lu, and Z. L. Lin, “PID control for synchronization of complex dynamical networks with directed topologies,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1334–1346, Mar. 2021. doi: 10.1109/TCYB.2019.2902810

[5] 
H. Y. Jin, J. C. Song, W. Y. Lan, and Z. Q. Gao, “On the characteristics of ADRC: A PID interpretation,” Sci. China Inf. Sci., vol. 63, no. 10, pp. 209201:1–209201:3, Apr. 2020. doi: 10.1007/s1143201896476

[6] 
A. H. Khan, Z. L. Shao, S. Li, Q. X. Wang, and N. Guan, “Which is the best PID variant for pneumatic soft robots? An experimental study” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 451–460, Mar. 2020. doi: 10.1109/JAS.2020.1003045

[7] 
S. K. Pradhan and B. Subudhi, “Position control of a flexible manipulator using a new nonlinear selftuning PID controller,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 136–149, Jan. 2020.

[8] 
J. J. Wang and T. Kumbasar, “Optimal PID control of spatial inverted pendulum with big bangbig crunch optimization,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 822–832, May 2020. doi: 10.1109/JAS.2018.7511267

[9] 
X. Y. Yu, F. Yang, C. Zou, and L. L. Ou, “Stabilization parametric region of distributed PID controllers for general firstorder multiagent systems with time delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1555–1564, Nov. 2020. doi: 10.1109/JAS.2019.1911627

[10] 
S. Zhong, Y. Huang, and L. Guo, “A parameter formula connecting PID and ADRC,” Sci. China Inf. Sci., vol. 63, no. 9, pp. 192203:1–192203:3, Jul. 2020. doi: 10.1007/s1143201927127

[11] 
C. Zhao and L. Guo, “PID controller design for second order nonlinear uncertain systems,” Sci. China Inf. Sci., vol. 60, no. 2, pp. 022201:1–022201:13, Jan. 2017. doi: 10.1007/s1143201608793

[12] 
S. Yuan, C. Zhao, and L. Guo, “Uncoupled PID control of coupled multiagent nonlinear uncertain systems,” J. Syst. Sci. Complex., vol. 31, no. 1, pp. 4–21, Feb. 2018. doi: 10.1007/s1142401873351

[13] 
J. K. Zhang and L. Guo, “Theory and design of PID controller for nonlinear uncertain systems,” IEEE Control Syst. Lett., vol. 3, no. 3, pp. 643–648, Jul. 2019. doi: 10.1109/LCSYS.2019.2915306

[14] 
C. Zhao and L. Guo, “Control of nonlinear uncertain systems by extended PID,” IEEE Trans. Autom. Control, vol. 66, no. 8, pp. 3840–3847, 2021.

[15] 
L. Guo, “Feedback and uncertainty: Some basic problems and theorems,” in Proc. 58th IEEE Conf. Decision and Control, Nice, France, 2019.

[16] 
D. S. Bernstein and A. N. Michel, “A chronological bibliography on saturating actuators,” Int. J. Robust Nonlinear Control, vol. 5, no. 5, pp. 375–380, Aug. 1995. doi: 10.1002/rnc.4590050502

[17] 
T. S. Hu and Z. L. Lin, Control Systems With Actuator Saturation: Analysis and Design. Boston, MA: Birkhauser, 2001.

[18] 
Z. L. Lin, “Control design in the presence of actuator saturation: From individual systems to multiagent systems,” Sci. China Inf. Sci., vol. 62, no. 2, pp. 26201:1–26201:3, Feb. 2019. doi: 10.1007/s114320189698x

[19] 
M. C. Obaiah and B. Subudhi, “A delaydependent antiwindup compensator for widearea power systems with timevarying delays and actuator saturation,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 106–117, Jan. 2020.

[20] 
Z. L. Lin, M. Glauser, T. S. Hu, and P. E. Allaire, “Magnetically suspended balance beam with disturbances: A test rig for nonlinear output regulation,” in Proc. 43rd IEEE Conf. Decision and Control, Nassau, Bahamas, 2004, pp. 4577–4582.

[21] 
J. Huang, Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004.

[22] 
S. Y. Yoon, P. Anantachaisilp, and Z. L. Lin, “An LMI approach to the control of exponentially unstable systems with input time delay,” in Proc. 52nd IEEE Conf. Decision and Control, Florence, Italy, 2013, pp. 312–317.
