A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 1
Jan.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, Jan. 2022. doi: 10.1109/JAS.2021.1004060
Citation: X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, Jan. 2022. doi: 10.1109/JAS.2021.1004060

Dynamic Event-Triggered Scheduling and Platooning Control Co-Design for Automated Vehicles Over Vehicular Ad-Hoc Networks

doi: 10.1109/JAS.2021.1004060
Funds:  This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128
More Information
  • This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks (VANETs) subject to finite communication resource. First, a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input. Under such a platoon model, the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader, while attaining improved communication efficiency. Toward this aim, a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed. One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status. Then, a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived. Finally, simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.


  • loading
  • [1]
    P. Jootel, “Safe Road Trains for the Environment, ” SARTRE Project, Final Project Report, Oct. 2012.
    D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoonbased vehicular cyber-physical systems,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 263–284, Jan.-Mar. 2016. doi: 10.1109/COMST.2015.2410831
    A. Ghasemi, R. Kazemi, and S. Azadi, “Stable decentralized control of platoon of vehicles with heterogeneous information feedback,” IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4299–4308, Nov. 2013. doi: 10.1109/TVT.2013.2253500
    Y. Zheng, S. Li, K. Li, and W. Ren, “Platooning of connected vehicles with undirected topologies: Robustness analysis and distributed Hinfinity controller synthesis,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 5, pp. 1353–1364, May 2018. doi: 10.1109/TITS.2017.2726038
    G. Fiengo, D. Lui, A. Petrillo, S. Santini, and M. Tufo, “Distributed robust PID control for leader tracking in uncertain connected ground vehicles with V2V communication delay,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1153–1165, Jun. 2019. doi: 10.1109/TMECH.2019.2907053
    J. Sahoo, E. Wu, P. Sahu, and M. Gerla, “Congestion-controlledcoordinator-based MAC for safety-critical message transmission in VANETs,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1423–1437, Sep. 2013. doi: 10.1109/TITS.2013.2264320
    Y. Zhu, D. Zhao, and Z. Zhong, “Adaptive optimal control of heterogeneous CACC system with uncertain dynamics,” IEEE Trans. Control Syst. Technol., vol. 27, no. 4, pp. 1772–1779, Jul. 2019. doi: 10.1109/TCST.2018.2811376
    Y. Liu, D. Yao, H. Li, and R. Lu, “Distributed cooperative compound tracking control for a platoon of vehicles with adaptive NN, ” IEEE Trans. Cybern. (2020), in press, DOI: 10.1109/TCYB.2020.3044883
    S. Wen and G. Guo, “Sampled-data control for connected vehicles with markovian switching topologies and communication delay,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 7, pp. 2930–2942, Jul. 2020. doi: 10.1109/TITS.2019.2921781
    J. Hu, P. Bhowmick, F. Arvin, A. Lanzon, and B. Lennox, “Cooperative control of heterogeneous connected vehicle platoons: An adaptive leaderfollowing approach,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 977–984, Apr. 2020. doi: 10.1109/LRA.2020.2966412
    S. Feng, H. Sun, Y. Zhang, J. Zheng, H. Liu, and L. Li, “Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints,” IEEE Trans. Control Syst. Technol., vol. 28, no. 3, pp. 1066–1073, May 2020. doi: 10.1109/TCST.2019.2896539
    P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685, 2007. doi: 10.1109/TAC.2007.904277
    D. Yue, E. Tian, and Q.-L. Han, “A delay system method for designing event-triggered controllers of networked control systems,” IEEE Trans. Automatic Autom. Control, vol. 58, no. 2, pp. 475–481, Feb. 2013. doi: 10.1109/TAC.2012.2206694
    C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and control of networked systems for multi-agent consensus,” Automatica, vol. 105, pp. 1–27, 2019. doi: 10.1016/j.automatica.2019.03.009
    X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding, and F. Yang, “Distributed event-triggered estimation over sensor networks: A survey,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1306–1320, Mar. 2020. doi: 10.1109/TCYB.2019.2917179
    X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861
    X. Ge, Q.-L. Han, L. Ding, Y.-L. Wang, and X.-M. Zhang, “Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques,” IEEE Trans. Syst.,Man,Cybern. Syst., vol. 50, no. 9, pp. 3112–3125, Sep. 2020. doi: 10.1109/TSMC.2020.3010825
    V. Dolk, J. Ploeg, and W. Heemels, “Event-triggered control for stringstable vehicle platooning,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12, pp. 3486–3500, Dec. 2017. doi: 10.1109/TITS.2017.2738446
    S. Linsenmayer, D. Dimarogonas, and F. Allgöwer, “Event-based vehicle coordination using nonlinear unidirectional controllers,” IEEE Trans. Control Netw. Syst., vol. 5, no. 4, pp. 1575–1584, Dec. 2018. doi: 10.1109/TCNS.2017.2733959
    Z. Li, B. Hu, M. Li, and G. Luo, “String stability analysis for vehicle platooning under unreliable communication links with event-triggered strategy,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2152–2164, Mar. 2019. doi: 10.1109/TVT.2019.2891681
    S. Wen, G. Guo, B. Chen, and X. Gao, “Cooperative adaptive cruise control of vehicles using a resource-efficient communication mechanism,” IEEE Trans. Intell. Veh., vol. 4, no. 1, pp. 127–150, Mar. 2019. doi: 10.1109/TIV.2018.2886676
    Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, Jul. 2006. doi: 10.1016/j.automatica.2006.02.013
    D. Swaroop and K. Hedrick, “String stability of interconnected systems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 349–357, Mar. 1996. doi: 10.1109/9.486636
    S. Feng, Y. Zhang, S. Li, Z. Cao, H. Liu, and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annu. Rev. Control, vol. 47, pp. 81–97, Mar. 2019. doi: 10.1016/j.arcontrol.2019.03.001
    C. Peng and T.-C. Yang, “Event-triggered communication and H∞ control co-design for networked control systems,” Automatica, vol. 49, no. 5, pp. 1326–1332, May 2013. doi: 10.1016/j.automatica.2013.01.038
    W. Heemels, M. Donkers, and A. Teel, “Periodic event-triggered control for linear systems,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 847–861, Apr. 2013. doi: 10.1109/TAC.2012.2220443
    A. Wang, X. Liao, and H. He, “Event-triggered differentially private average consensus for multi-agent network,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 75–83, Jan. 2019. doi: 10.1109/JAS.2019.1911327
    A. Mustafa, N. Dhar, and N. Verma, “Event-triggered sliding mode control for trajectory tracking of nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 307–314, Jan. 2020. doi: 10.1109/JAS.2019.1911654
    D. Ding, Z. Wang, and Q.-L. Han, “A set-membership approach to eventtriggered filtering for general nonlinear systems over sensor networks,” IEEE Trans. Automatic Control, vol. 65, no. 4, pp. 1792–1799, Apr. 2020. doi: 10.1109/TAC.2019.2934389
    A. Girard, “Dynamic triggering mechanisms for event-triggered control,” IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1992–1997, Jul. 2015. doi: 10.1109/TAC.2014.2366855
    A. Amini, A. Asif, and A. Mohammadi, “Formation-containment control using dynamic event-triggering mechanism for multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sep. 2020.
    S. Hu, D. Yue, Z. Cheng, E. Tian, X. Xie, and X. Chen, “Co-design of dynamic event-triggered communication scheme and resilient observerbased control under aperiodic DoS attacks, ” IEEE Trans. Cybern. (2020), in press, DOI: 10.1109/TCYB.2020.3001187
    W. He, B. Xu, Q.-L. Han, and F. Qian, “Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 2996–3008, Jul. 2020. doi: 10.1109/TCYB.2019.2920093
    X. Ge, Q.-L. Han, and Z. Wang, “A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 171–183, Jan. 2019. doi: 10.1109/TCYB.2017.2769722
    Q. Li, B. Shen, Z. Wang, T. Huang, and J. Luo, “Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach,” IEEE Trans. Cybern., vol. 49, no. 5, pp. 1979–1986, May 2019. doi: 10.1109/TCYB.2018.2818941
    Q. Li, B. Shen, Z. Wang, and W. Sheng, “Recursive distributed filtering over sensor networks on Gilbert-Elliott channels: A dynamic eventtriggered approach,” Automatica, vol. 113, no. 108681, Mar. 2020.
    X. Ge and Q.-L. Han, “Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8118–8127, Oct. 2017. doi: 10.1109/TIE.2017.2701778
    K. Liu, V. Suplin, and E. Fridman, “Stability of linear systems with general sawtooth delay,” IMA J. Math. Control I., vol. 27, no. 4, pp. 419–436, Dec. 2010. doi: 10.1093/imamci/dnq023
    K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems. Birkhäuser, Boston, 2003.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1595) PDF downloads(149) Cited by()


    DownLoad:  Full-Size Img  PowerPoint