IEEE/CAA Journal of Automatica Sinica
Citation:  Yirui Wang, Shangce Gao, Mengchu Zhou and Yang Yu, "A MultiLayered Gravitational Search Algorithm for Function Optimization and RealWorld Problems," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 94109, Jan. 2021. doi: 10.1109/JAS.2020.1003462 
[1] 
Y. Yu, S. C. Gao, Y. R. Wang, and Y. Todo, “Global optimumbased search differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 379–394, Mar. 2019. doi: 10.1109/JAS.2019.1911378

[2] 
S. C. Gao, Y. Yu, Y. R. Wang, J. H. Wang, J. J. Cheng, and M. C. Zhou, “Chaotic local searchbased differential evolution algorithms for optimization,” IEEE Trans. Syst., Man, Cybern.: Syst., 2019, to be published. DOI: 10.1109/TSMC.2019.2956121.

[3] 
S. C. Gao, S. B. Song, J. J. Cheng, Y. Todo, and M. C. Zhou, “Incorporation of solvent effect into multiobjective evolutionary algorithm for improved protein structure prediction,” IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 15, no. 4, pp. 1365–1378, Jul.Aug. 2018. doi: 10.1109/TCBB.2017.2705094

[4] 
Z. M. Lv, L. Q. Wang, Z. Y. Han, J. Zhao, and W. Wang, “Surrogateassisted particle swarm optimization algorithm with Pareto active learning for expensive multiobjective optimization,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 838–849, May 2019. doi: 10.1109/JAS.2019.1911450

[5] 
P. Champasak, N. Panagant, N. Pholdee, S. Bureerat, and A. R. Yildiz, “Selfadaptive manyobjective metaheuristic based on decomposition for manyobjective conceptual design of a fixed wing unmanned aerial vehicle,” Aerosp. Sci. Technol., vol. 100, Article ID 105783, May 2020.

[6] 
F. Hamza, H. Abderazek, S. Lakhdar, D. Ferhat, and A. R. Yildiz, “Optimum design of camroller follower mechanism using a new evolutionary algorithm,” Int. J. Adv. Manuf. Technol., vol. 99, no. 5–8, pp. 1267–1282, Nov. 2018. doi: 10.1007/s0017001825433

[7] 
S. G. Gao, Y. R. Wang, J. J. Cheng, Y. Inazumi, and Z. Tang, “Ant colony optimization with clustering for solving the dynamic location routing problem,” Appl. Math. Comput., vol. 285, pp. 149–173, Jul. 2016.

[8] 
Y. R. Wang, S. C. Gao, and Y. Todo, “Ant colony systems for optimization problems in dynamic environments,” in Swarm Intelligence  Volume 1: Principles, Current Algorithms and Methods, Y. Tan, Ed. IET, London, UK: The Institution of Engineering and Technology, 2018, pp. 85−120.

[9] 
H. Abderazek, A. R. Yildiz, and S. Mirjalili, “Comparison of recent optimization algorithms for design optimization of a camfollower mechanism,” Knowl.Based Syst., vol. 191, Article ID 105237, Mar. 2020.

[10] 
E. Kurtuluş, A. R. Yildiz, S. M. Sait, and S. Bureerat, “A novel hybrid Harris hawkssimulated annealing algorithm and RBFbased metamodel for design optimization of highway guardrails,” Mater. Test., vol. 62, no. 3, pp. 251–260, Mar. 2020. doi: 10.3139/120.111478

[11] 
S. C. Gao, M. C. Zhou, Y. R. Wang, J. J. Cheng, H. Yachi, and J. H. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 2, pp. 601–614, Feb. 2019. doi: 10.1109/TNNLS.2018.2846646

[12] 
L. Wang and J. W. Lu, “A memetic algorithm with competition for the capacitated green vehicle routing problem,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 516–526, Mar. 2019. doi: 10.1109/JAS.2019.1911405

[13] 
A. R. Yildiz, B. S. Yildiz, S. M. Sait, S. Bureerat, and N. Pholdee, “A new hybrid Harris hawksNelderMead optimization algorithm for solving design and manufacturing problems,” Mater. Test., vol. 61, no. 8, pp. 735–743, Aug. 2019. doi: 10.3139/120.111378

[14] 
B. S. Yildiz and A. R. Yildiz, “Mothflame optimization algorithm to determine optimal machining parameters in manufacturing processes,” Mater. Test., vol. 59, no. 5, pp. 425–429, May 2017. doi: 10.3139/120.111024

[15] 
A. R. Yildiz, “A novel hybrid whale–Nelder–Mead algorithm for optimization of design and manufacturing problems,” Int. J. Adv. Manuf. Technol., vol. 105, no. 12, pp. 5091–5104, Dec. 2019. doi: 10.1007/s00170019045321

[16] 
B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait, and V. Patel, “The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components,” Mater. Test., vol. 62, no. 3, pp. 261–264, Mar. 2020. doi: 10.3139/120.111479

[17] 
B. S. Yildiz and A. R. Yildiz, “The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components,” Mater. Test., vol. 61, no. 8, pp. 744–748, Aug. 2019. doi: 10.3139/120.111379

[18] 
B. S. Yildiz and A. R. Yildiz, “Comparison of grey wolf, whale, water cycle, ant lion and sinecosine algorithms for the optimization of a vehicle engine connecting rod,” Mater. Test., vol. 60, no. 3, pp. 311–315, Mar. 2018. doi: 10.3139/120.111153

[19] 
A. R. Yildiz, H. Abderazek, and S. Mirjalili, “A comparative study of recent nontraditional methods for mechanical design optimization,” Arch. Comput. Methods Eng., vol. 27, no. 4, pp. 1031–1048, Sep. 2020. doi: 10.1007/s1183101909343x

[20] 
Y. R. Wang, Y. Yu, S. Y. Cao, X. Y. Zhang, and S. C. Gao, “A review of applications of artificial intelligent algorithms in wind farms,” Artif. Intell. Rev., vol. 53, no. 5, pp. 3447–3500, Jun. 2020. doi: 10.1007/s10462019097687

[21] 
J. L. Payne, M. Giacobini, and J. H. Moore, “Complex and dynamic population structures: Synthesis, open questions, and future directions,” Soft Comput., vol. 17, no. 7, pp. 1109–1120, Jul. 2013. doi: 10.1007/s005000130994x

[22] 
B. Allen, G. Lippner, Y. T. Chen, B. Fotouhi, N. Momeni, S. T. Yau, and M. A. Nowak, “Evolutionary dynamics on any population structure,” Nature, vol. 544, no. 7649, pp. 227–230, Apr. 2017. doi: 10.1038/nature21723

[23] 
J. J. Cheng, X. Wu, M. C. Zhou, S. C. Gao, Z. H. Huang, and C. Liu, “A novel method for detecting new overlapping community in complex evolving networks,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 9, pp. 1832–1844, Sep. 2019. doi: 10.1109/TSMC.2017.2779138

[24] 
B. Dorronsoro and P. Bouvry, “Improving classical and decentralized differential evolution with new mutation operator and population topologies,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 67–98, Feb. 2011. doi: 10.1109/TEVC.2010.2081369

[25] 
E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 6, no. 5, pp. 443–462, Oct. 2002. doi: 10.1109/TEVC.2002.800880

[26] 
N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for particle swarm optimization and differential evolution,” Swarm Evol. Comput., vol. 39, pp. 24–35, Apr. 2018. doi: 10.1016/j.swevo.2017.11.002

[27] 
E. CantúPaz, Efficient and Accurate Parallel Genetic Algorithms. Boston, USA: Springer, 2001.

[28] 
E. Alba and B. Dorronsoro, Cellular Genetic Algorithms. Boston, USA: Springer, 2008.

[29] 
A. Sharifi, V. Noroozi, M. Bashiri, A. B. Hashemi, and M. R. Meybodi, “Two phased cellular PSO: A new collaborative cellular algorithm for optimization in dynamic environments,” in Proc. 2012 IEEE Congr. Evolutionary Computation, Brisbane, Australia, pp. 1−8.

[30] 
S. Nabizadeh, A. Rezvanian, and M. R. Meybodi, “A multiswarm cellular PSO based on clonal selection algorithm in dynamic environments,” in Proc. 2012 Int. Conf. Informatics, Electronics & Vision, Dhaka, Bangladesh, pp. 482−486.

[31] 
W. Fang, J. Sun, H. H. Chen, and X. J. Wu, “A decentralized quantuminspired particle swarm optimization algorithm with cellular structured population,” Inf. Sci., vol. 330, pp. 19–48, Feb. 2016. doi: 10.1016/j.ins.2015.09.055

[32] 
B. Dorronsoro and P. Bouvry, “Differential evolution algorithms with cellular populations,” in Proc. 11th Int. Conf. Parallel Problem Solving from Nature, Kraków, Poland, 2010, pp. 320−330.

[33] 
J. L. Liao, Y. Q. Cai, T. Wang, H. Tian, and Y. H. Chen, “Cellular direction information based differential evolution for numerical optimization: An empirical study,” Soft Comput., vol. 20, no. 7, pp. 2801–2827, Jul. 2016. doi: 10.1007/s0050001516829

[34] 
A. El Dor, M. Clerc, and P. Siarry, “A multiswarm PSO using charged particles in a partitioned search space for continuous optimization,” Comput. Optim. Appl., vol. 53, no. 1, pp. 271–295, Sep. 2012. doi: 10.1007/s1058901194494

[35] 
J. J. Liang and P. N. Suganthan, “Dynamic multiswarm particle swarm optimizer,” in Proc. 2005 IEEE Swarm Intelligence Symp., Pasadena, USA, pp. 124−129.

[36] 
Y. Jiang, W. Huang, and L. Chen, “Applying multiswarm accelerating particle swarm optimization to dynamic continuous functions,” in Proc. 2009 Second Int. Workshop on Knowledge Discovery and Data Mining, Moscow, Russia, pp. 710−713.

[37] 
I. De Falco, A. Della Cioppa, D. Maisto, U. Scafuri, and E. Tarantino, “Biological invasion–inspired migration in distributed evolutionary algorithms,” Inf. Sci., vol. 207, pp. 50–65, Nov. 2012. doi: 10.1016/j.ins.2012.04.027

[38] 
J. X. Cheng, G. X. Zhang, and F. Neri, “Enhancing distributed differential evolution with multicultural migration for global numerical optimization,” Inf. Sci., vol. 247, pp. 72–93, Oct. 2013. doi: 10.1016/j.ins.2013.06.011

[39] 
Y. J. Gong, W. N. Chen, Z. H. Zhan, J. Zhang, Y. Li, Q. F. Zhang, and J. J. Li, “Distributed evolutionary algorithms and their models: A survey of the stateoftheart,” Appl. Soft Comput., vol. 34, pp. 286–300, Sep. 2015. doi: 10.1016/j.asoc.2015.04.061

[40] 
S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer and its adaptive variant,” IEEE Trans. Syst.,Man,Cybern.,Part B (Cybern.)

[41] 
F. Herrera, M. Lozano, and C. Moraga, “Hierarchical distributed genetic algorithms,” Int. J. Intell. Syst., vol. 14, no. 11, pp. 1099–1121, Nov. 1999. doi: 10.1002/(SICI)1098111X(199911)14:11<1099::AIDINT3>3.0.CO;2O

[42] 
M. Giacobini, M. Preuss, and M. Tomassini, “Effects of scalefree and smallworld topologies on binary coded selfadaptive CEA,” in Proc. 6th European Conf. Evolutionary Computation in Combinatorial Optimization, Budapest, Hungary, 2006, pp. 86−98.

[43] 
C. G. Zhang and Z. Yi, “Scalefree fully informed particle swarm optimization algorithm,” Inf. Sci., vol. 181, no. 20, pp. 4550–4568, Oct. 2011. doi: 10.1016/j.ins.2011.02.026

[44] 
E. Lieberman, C. Hauert, and M. A. Nowak, “Evolutionary dynamics on graphs,” Nature, vol. 433, no. 7023, pp. 312–316, Jan. 2005. doi: 10.1038/nature03204

[45] 
S. C. Gao, Y. R. Wang, J. H. Wang, and J. J. Cheng, “Understanding differential evolution: A Poisson law derived from population interaction network,” J. Comput. Sci., vol. 21, pp. 140–149, Jul. 2017. doi: 10.1016/j.jocs.2017.06.007

[46] 
Y. R. Wang, S. C. Gao, Y. Yu, and Z. Xu, “The discovery of population interaction with a power law distribution in brain storm optimization,” Memetic Comput., vol. 11, no. 1, pp. 65–87, Mar. 2019. doi: 10.1007/s122930170248z

[47] 
E. Rashedi, H. NezamabadiPour, and S. Saryazdi, “GSA: A gravitational search algorithm,” Inf. Sci., vol. 179, no. 13, pp. 2232–2248, Jun. 2009. doi: 10.1016/j.ins.2009.03.004

[48] 
S. Sarafrazi, H. NezamabadiPour, and S. Saryazdi, “Disruption: A new operator in gravitational search algorithm,” Sci. Iran., vol. 18, no. 3, pp. 539–548, Jun. 2011. doi: 10.1016/j.scient.2011.04.003

[49] 
H. Nobahari, M. Nikusokhan, and P. Siarry, “A multiobjective gravitational search algorithm based on nondominated sorting,” Int. J. Swarm Intell. Res., vol. 3, no. 3, pp. 32–49, Jul. 2012. doi: 10.4018/jsir.2012070103

[50] 
S. C. Gao, C. Vairappan, Y. Wang, Q. P. Cao, and Z. Tang, “Gravitational search algorithm combined with chaos for unconstrained numerical optimization,” Appl. Math. Comput., vol. 231, pp. 48–62, Mar. 2014.

[51] 
M. Khatibinia and S. Khosravi, “A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams,” Appl. Soft Comput., vol. 16, pp. 223–233, Mar. 2014. doi: 10.1016/j.asoc.2013.12.008

[52] 
U. Güvenç and F. Katircioğlu, “Escape velocity: A new operator for gravitational search algorithm,” Neural Comput. Appl., vol. 31, no. 1, pp. 27–42, Jan. 2019. doi: 10.1007/s0052101729779

[53] 
P. Haghbayan, H. NezamabadiPour, and S. Kamyab, “A niche GSA method with nearest neighbor scheme for multimodal optimization,” Swarm Evol. Comput., vol. 35, pp. 78–92, Aug. 2017. doi: 10.1016/j.swevo.2017.03.002

[54] 
M. Doraghinejad and H. NezamabadiPour, “Black hole: A new operator for gravitational search algorithm,” Int. J. Comput. Intell. Syst., vol. 7, no. 5, pp. 809–826, Oct. 2014. doi: 10.1080/18756891.2014.966990

[55] 
S. Sarafrazi, H. NezamabadiPour, and S. R. Seydnejad, “A novel hybrid algorithm of GSA with kepler algorithm for numerical optimization,” J. King Saud Univ.Comput. Inf. Sci., vol. 27, no. 3, pp. 288–296, Jul. 2015.

[56] 
B. Shaw, V. Mukherjee, and S. P. Ghoshal, “A novel oppositionbased gravitational search algorithm for combined economic and emission dispatch problems of power systems,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 21–33, Feb. 2012. doi: 10.1016/j.ijepes.2011.08.012

[57] 
E. Rashedi, H. NezamabadiPour, and S. Saryazdi, “BGSA: Binary gravitational search algorithm,” Nat. Comput., vol. 9, no. 3, pp. 727–745, Sep. 2010. doi: 10.1007/s1104700991753

[58] 
S. C. Gao, Y. Todo, T. Gong, G. Yang, and Z. Tang, “Graph planarization problem optimization based on triplevalued gravitational search algorithm,” IEEJ Trans. Electr. Electron. Eng., vol. 9, no. 1, pp. 39–48, Jan. 2014. doi: 10.1002/tee.21934

[59] 
M. SoleimanpourMoghadam, H. NezamabadiPour, and M. M. Farsangi, “A quantum inspired gravitational search algorithm for numerical function optimization,” Inf. Sci., vol. 267, pp. 83–100, May 2014. doi: 10.1016/j.ins.2013.09.006

[60] 
S. Duman, U. Güvenç, Y. Sönmez, and N. Yörükeren, “Optimal power flow using gravitational search algorithm,” Energy Convers. Manag., vol. 59, pp. 86–95, Jul. 2012. doi: 10.1016/j.enconman.2012.02.024

[61] 
B. González, F. Valdez, P. Melin, and G. PradoArechiga, “Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition,” Expert Syst. Appl., vol. 42, no. 14, pp. 5839–5847, Aug. 2015. doi: 10.1016/j.eswa.2015.03.034

[62] 
R. E. Precup, R. C. David, E. M. Petriu, M. B. Radac, and S. Preitl, “Adaptive GSAbased optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness,” IEEE Trans. Cybern., vol. 44, no. 11, pp. 1997–2009, Nov. 2014. doi: 10.1109/TCYB.2014.2307257

[63] 
S. AlZubaidi, J. A. Ghani, and C. H. C. Haron, “Optimization of cutting conditions for end milling of Ti6Al4V Alloy by using a gravitational search algorithm (GSA),” Meccanica, vol. 48, no. 7, pp. 1701–1715, Sep. 2013. doi: 10.1007/s1101201397022

[64] 
E. Rashedi, E. Rashedi, and H. NezamabadiPour, “A comprehensive survey on gravitational search algorithm,” Swarm Evol. Comput., vol. 41, pp. 141–158, Aug. 2018. doi: 10.1016/j.swevo.2018.02.018

[65] 
A. R. Yildiz, E. Kurtuluş, E. Demirci, B. S. Yildiz, and S. Karagöz, “Optimization of thinwall structures using hybrid gravitational search and NelderMead algorithm,” Mater. Test., vol. 58, no. 1, pp. 75–78, Jan. 2016. doi: 10.3139/120.110823

[66] 
B. S. Yildiz, H. Lekesiz, and A. R. Yildiz, “Structural design of vehicle components using gravitational search and charged system search algorithms,” Mater. Test., vol. 58, no. 1, pp. 79–81, Jan. 2016. doi: 10.3139/120.110819

[67] 
G. Y. Sun, A. Z. Zhang, Z. J. Wang, Y. J. Yao, J. S. Ma, and G. D. Couples, “Locally informed gravitational search algorithm,” Knowl.Based Syst., vol. 104, pp. 134–144, Jul. 2016. doi: 10.1016/j.knosys.2016.04.017

[68] 
Z. Y. Lei, S. C. Gao, S. Gupta, J. J. Cheng, and G. Yang, “An aggregative learning gravitational search algorithm with selfadaptive gravitational constants,” Expert Syst. Appl., vol. 152, Article ID 113396, Aug. 2020.

[69] 
F. Q. Zhao, F. L. Xue, Y. Zhang, W. M. Ma, C. Zhang, and H. B. Song, “A hybrid algorithm based on selfadaptive gravitational search algorithm and differential evolution,” Expert Syst. Appl., vol. 113, pp. 515–530, Dec. 2018. doi: 10.1016/j.eswa.2018.07.008

[70] 
A. Z. Zhang, G. Y. Sun, J. C. Ren, X. D. Li, Z. J. Wang, and X. P. Jia, “A dynamic neighborhood learningbased gravitational search algorithm,” IEEE Trans. Cybern., vol. 48, no. 1, pp. 436–447, Jan. 2018. doi: 10.1109/TCYB.2016.2641986

[71] 
Y. R. Wang, Y. Yu, S. C. Gao, H. Y. Pan, and G. Yang, “A hierarchical gravitational search algorithm with an effective gravitational constant,” Swarm Evol. Comput., vol. 46, pp. 118–139, May 2019. doi: 10.1016/j.swevo.2019.02.004

[72] 
H. Mittal, R. Pal, A. Kulhari, and M. Saraswat, “Chaotic kbest gravitational search algorithm (CKGSA),” in Proc. 2016 Ninth Int. Conf. Contemporary Computing, Noida, India, pp. 1−6.

[73] 
F. Olivas, F. Valdez, P. Melin, A. Sombra, and O. Castillo, “Interval type2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm,” Inf. Sci., vol. 476, pp. 159–175, Feb. 2019. doi: 10.1016/j.ins.2018.10.025

[74] 
H. Mittal and M. Saraswat, “An image segmentation method using logarithmic kbest gravitational search algorithm based superpixel clustering,” Evol. Intell., 2018, to be published. DOI: 10.1007/s120650180192y.

[75] 
D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B. Naik, and Y. Deng, “Improving exploration and exploitation via a hyperbolic gravitational search algorithm,” Knowl.Based Syst., vol. 193, Article ID 105404, Apr. 2020.

[76] 
H. Mittal and M. Saraswat, “An optimum multilevel image thresholding segmentation using nonlocal means 2D histogram and exponential Kbest gravitational search algorithm,” Eng. Appl. Artif. Intell., vol. 71, pp. 226–235, May 2018. doi: 10.1016/j.engappai.2018.03.001

[77] 
D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B. Naik, and A. Abraham, “Neural network and fuzzy system for the tuning of gravitational search algorithm parameters,” Expert Syst. Appl., vol. 102, pp. 234–244, Jul. 2018. doi: 10.1016/j.eswa.2018.02.026

[78] 
S. Mirjalili and S. Z. M. Hashim, “A new hybrid PSOGSA algorithm for function optimization,” in Proc. 2010 Int. Conf. Computer and Information Application, Tianjin, China, pp. 374−377.

[79] 
S. Mirjalili and A. Lewis, “Adaptive gbestguided gravitational search algorithm,” Neural Comput. Appl., vol. 25, no. 7–8, pp. 1569–1584, Dec. 2014. doi: 10.1007/s005210141640y

[80] 
E. Rashedi, H. NezamabadiPour, and S. Saryazdi, “Filter modeling using gravitational search algorithm,” Eng. Appl. Artif. Intell., vol. 24, no. 1, pp. 117–122, Feb. 2011. doi: 10.1016/j.engappai.2010.05.007

[81] 
A. Bahrololoum, H. NezamabadiPour, H. Bahrololoum, and M. Saeed, “A prototype classifier based on gravitational search algorithm,” Appl. Soft Comput., vol. 12, no. 2, pp. 819–825, Feb. 2012. doi: 10.1016/j.asoc.2011.10.008

[82] 
J. K. Ji, S. C. Gao, S. Q. Wang, Y. J. Tang, H. Yu, and Y. Todo, “Selfadaptive gravitational search algorithm with a modified chaotic local search,” IEEE Access, vol. 5, pp. 17881–17895, Sep. 2017. doi: 10.1109/ACCESS.2017.2748957

[83] 
N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained realparameter numerical optimization,” Nanyang Technological University, Singapore, 2016.

[84] 
J. D. Gibbons and S. Chakraborti, “Nonparametric statistical inference,” in International Encyclopedia of Statistical Science, M. Lovric, Ed. Berlin, Heidelberg, Germany: Springer, 2011, pp. 977−979.

[85] 
B. Gu and F. Pan, “Modified gravitational search algorithm with particle memory ability and its application,” Int. J. Innov. Comput.,Inf. Control, vol. 9, no. 11, pp. 4531–4544, 2013.

[86] 
Z. Y. Song, S. C. Gao, Y. Yu, J. Sun, and Y. Todo, “Multiple chaos embedded gravitational search algorithm,” IEICE Trans. Inf. Syst., vol. E100D, no. 4, pp. 888–900, Apr. 2017. doi: 10.1587/transinf.2016EDP7512

[87] 
Y. R. Wang, S. C. Gao, Y. Yu, Z. Q. Wang, J. J. Cheng, and T. Yuki, “A gravitational search algorithm with chaotic neural oscillators,” IEEE Access, vol. 8, pp. 25938–25948, Feb. 2020. doi: 10.1109/ACCESS.2020.2971505

[88] 
Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. 1998 IEEE Int. Conf. Evolutionary Computation Proceedings, Anchorage, USA, pp. 69−73.

[89] 
Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi, “Orthogonal learning particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6, pp. 832–847, Dec. 2011. doi: 10.1109/TEVC.2010.2052054

[90] 
Y. J. Gong, J. J. Li, Y. C. Zhou, Y. Li, H. S. H. Chung, Y. H. Shi, and J. Zhang, “Genetic learning particle swarm optimization,” IEEE Trans. Cybern., vol. 46, no. 10, pp. 2277–2290, Oct. 2016. doi: 10.1109/TCYB.2015.2475174

[91] 
R. Cheng and Y. C. Jin, “A competitive swarm optimizer for large scale optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204, Feb. 2015. doi: 10.1109/TCYB.2014.2322602

[92] 
S. Das and P. N. Suganthan, “Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems,” Jadavpur University, Kolkata, 2010.

[93] 
J. Zhao, S. X. Liu, M. C. Zhou, X. W. Guo, and L. Qi, “Modified cuckoo search algorithm to solve economic power dispatch optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 794–806, Jul. 2018. doi: 10.1109/JAS.2018.7511138

[94] 
K. Z. Gao, Z. G. Cao, L. Zhang, Z. H. Chen, Y. Y. Han, and Q. K. Pan, “A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 904–916, Jul. 2019. doi: 10.1109/JAS.2019.1911540

[95] 
J. J. Wang and T. Kumbasar, “Parameter optimization of interval Type2 fuzzy neural networks based on PSO and BBBC methods,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 247–257, Jan. 2019. doi: 10.1109/JAS.2019.1911348
