A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 1
Jan.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Elene Firmeza Ohata, Gabriel Maia Bezerra, João Victor Souza das Chagas, Aloísio Vieira Lira Neto, Adriano Bessa Albuquerque, Victor Hugo C. de Albuquerque and Pedro Pedrosa Rebouças Filho, "Automatic Detection of COVID-19 Infection Using Chest X-Ray Images Through Transfer Learning," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 239-248, Jan. 2021. doi: 10.1109/JAS.2020.1003393
Citation: Elene Firmeza Ohata, Gabriel Maia Bezerra, João Victor Souza das Chagas, Aloísio Vieira Lira Neto, Adriano Bessa Albuquerque, Victor Hugo C. de Albuquerque and Pedro Pedrosa Rebouças Filho, "Automatic Detection of COVID-19 Infection Using Chest X-Ray Images Through Transfer Learning," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 239-248, Jan. 2021. doi: 10.1109/JAS.2020.1003393

Automatic Detection of COVID-19 Infection Using Chest X-Ray Images Through Transfer Learning

doi: 10.1109/JAS.2020.1003393
Funds:  This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) (001), and the Brazilian National Council for Research and Development (CNPq) (431709/2018-1, 311973/2018-3, 304315/2017-6, 430274/2018-1)
More Information
  • The new coronavirus (COVID-19), declared by the World Health Organization as a pandemic, has infected more than 1 million people and killed more than 50 thousand. An infection caused by COVID-19 can develop into pneumonia, which can be detected by a chest X-ray exam and should be treated appropriately. In this work, we propose an automatic detection method for COVID-19 infection based on chest X-ray images. The datasets constructed for this study are composed of 194 X-ray images of patients diagnosed with coronavirus and 194 X-ray images of healthy patients. Since few images of patients with COVID-19 are publicly available, we apply the concept of transfer learning for this task. We use different architectures of convolutional neural networks (CNNs) trained on ImageNet, and adapt them to behave as feature extractors for the X-ray images. Then, the CNNs are combined with consolidated machine learning methods, such as k-Nearest Neighbor, Bayes, Random Forest, multilayer perceptron (MLP), and support vector machine (SVM). The results show that, for one of the datasets, the extractor-classifier pair with the best performance is the MobileNet architecture with the SVM classifier using a linear kernel, which achieves an accuracy and an F1-score of 98.5%. For the other dataset, the best pair is DenseNet201 with MLP, achieving an accuracy and an F1-score of 95.6%. Thus, the proposed approach demonstrates efficiency in detecting COVID-19 in X-ray images.

     

  • loading
  • [1]
    K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J. M. Hyman, P. Yan, and G. Chowell, “Real-time forecasts of the COVID-19 epidemic in china from February 5th to February 24th, 2020,” Infect. Dis. Model., vol. 5, pp. 256–263, Feb. 2020.
    [2]
    L. Yan, H. T. Zhang, Y. Xiao, M. L. Wang, C. Sun, J. Liang, S. S. Li, M. Y. Zhang, Y. Q. Guo, Y. Xiao, X. C. Tang, H. S. Cao, X. Tan, N. N. Huang, B. Jiao, A. L. Luo, Z. G. Cao, H. Xu, and Y. Yuan, “Prediction of criticality in patients with severe COVID-19 infection using three clinical features: A machine learning-based prognostic model with clinical data in Wuhan,” medRxiv, 2020.
    [3]
    Y. H. Xu, J. H. Dong, W. M. An, X. Y. Lv, X. P. Yin, J. Z. Zhang, L. Dong, X. Ma, H. J. Zhang, and B. L. Gao, “Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2,” J. Infect., vol. 80, no. 4, pp. 394–400, Apr. 2020. doi: 10.1016/j.jinf.2020.02.017
    [4]
    COVID-19 Coronavirus Pandemic. [Online]. Available: https://www.worldometers.info/coronavirus/
    [5]
    E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard to track COVID-19 in real time,” The Lancet Infectious Diseases, vol. 20, no. 5, pp. 533–534, 2020.
    [6]
    E. Mahase, “Coronavirus: COVID-19 has killed more people than SARS and MERS combined, despite lower case fatality rate,” BMJ, vol. 368, pp. m641, Feb. 2020.
    [7]
    B. Armocida, B. Formenti, S. Ussai, F. Palestra, and E. Missoni, “The italian health system and the COVID-19 challenge,” Lancet Public Health, vol. 5, no. 5, pp. e253, May 2020. doi: 10.1016/S2468-2667(20)30074-8
    [8]
    A. Narin, C. Kaya, and Z. Pamuk, “Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks, ” arXiv preprint arXiv: 2003.10849, 2020.
    [9]
    Y. Li and L. M. Xia, “Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management,” Am. J. Roentgenol., vol. 214, no. 6, pp. 1280–1286, Jun. 2020. doi: 10.2214/AJR.20.22954
    [10]
    O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Q. Zhang, W. B. Ji, A. Bernheim, and E. Siegel, “Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis, ” arXiv preprint arXiv: 2003.05037, 2020.
    [11]
    Q. Ke, J. S. Zhang, W. Wei, D. Połap, M. Woźniak, L. Kośmider, and R. Damaševĭcius, “A neuro-heuristic approach for recognition of lung diseases from X-ray images,” Expert Syst. Appl., vol. 126, pp. 218–232, Jul. 2019. doi: 10.1016/j.eswa.2019.01.060
    [12]
    D. Poap, M. Wozniak, R. Damaševičius, and W. Wei, “Chest radiographs segmentation by the use of nature-inspired algorithm for lung disease detection, ” in Proc. IEEE Symp. Series Computational Intelligence, Bangalore, India, 2018.
    [13]
    F. Shan, Y. Z. Gao, J. Wang, W. Y. Shi, N. N. Shi, M. F. Han, Z. Xue, D. G. Shen, and Y. X. Shi, “Lung infection quantification of COVID-19 in CT images with deep learning, ” arXiv preprint arXiv: 2003.04655, 2020.
    [14]
    X. W. Xu, X. G. Jiang, C. L. Ma, P. Du, X. K. Li, S. Z. Lv, L. Yu, Y. F. Chen, J. W. Su, G. J. Lang, Y. T. Li, H. Zhao, K. J. Xu, L. X. Ruan, and Wei Wu “Deep learning system to screen coronavirus disease 2019 pneumonia, ” arXiv preprint arXiv: 2002.09334, 2020.
    [15]
    S. Wang, B. Kang, J. L. Ma, X. J. Zeng, M. M. Xiao, J. Guo, M. J. Cai, J. Y. Yang, Y. D. Li, X. F. Meng, and B. Xu, “A deep learning algorithm using CT images to screen for corona virus disease (COVID-19),” medRxiv, 2020.
    [16]
    V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Moreira, R. Damaševičius, and V. H. C. de Albuquerque, “A novel transfer learning based approach for pneumonia detection in chest X-ray images,” Appl. Sci., vol. 10, no. 2, pp. 559, Jan. 2020. doi: 10.3390/app10020559
    [17]
    I. D. Apostolopoulos and T. Bessiana, “Covid-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks, ” arXiv preprint arXiv: 2003.11617, 2020.
    [18]
    L. D. Wang and A. Wong, “COVID-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images, ” arXiv preprint arXiv: 2003.09871, 2020.
    [19]
    L. J. M. Kroft, L. van der Velden, I. H. Girón, J. J. H. Roelofs, A. de Roos, and J. Geleijns, “Added value of ultra–low-dose computed tomography, dose equivalent to chest X-ray radiography, for diagnosing chest pathology,” J. Thorac. Imaging, vol. 34, no. 3, pp. 179–186, May 2019. doi: 10.1097/RTI.0000000000000404
    [20]
    J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol., vol. 20, no. 11, pp. 2707–2714, Nov. 2010. doi: 10.1007/s00330-010-1845-0
    [21]
    S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2009.
    [22]
    K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of transfer learning,” J. Big data, vol. 3, no. 1, pp. 9, Oct. 2016. doi: 10.1186/s40537-016-0043-6
    [23]
    M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for transfer learning?, ” arXiv preprint arXiv: 1608.08614, 2016.
    [24]
    O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. A. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F. F. Li, “Imagenet large scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015. doi: 10.1007/s11263-015-0816-y
    [25]
    R. V. M. da Nóbrega, P. P. R. Filho, M. B. Rodrigues, S. P. P. da Silva, C. M. J. M. D. Júnior, and V. H. C. de Albuquerque, “Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks,” Neural Comput. Appl., vol. 32, no. 15, pp. 11065–11082, Aug. 2020. doi: 10.1007/s00521-018-3895-1
    [26]
    W. Zhao, “Research on the deep learning of the small sample data based on transfer learning,” AIP Conf. Proc., vol. 1864, no. 1, pp. 020018, Aug. 2017.
    [27]
    C. M. J. M. Dourado Jr, S. P. P. da Silva, R. V. M. da Nóbrega, A. C. da S. Barros, P. P. R. Filho, and V. H. C. de Albuquerque, “Deep learning IoT system for online stroke detection in skull computed tomography images,” Comput. Netw., vol. 152, pp. 25–39, Apr. 2019. doi: 10.1016/j.comnet.2019.01.019
    [28]
    J. D. C. Rodrigues, P. P. R. Filho, E. Peixoto Jr, A. Kumar, and V. H. C. de Albuquerque, “Classification of EEG signals to detect alcoholism using machine learning techniques,” Pattern Recognit Lett, vol. 125, pp. 140–149, Jul. 2019. doi: 10.1016/j.patrec.2019.04.019
    [29]
    J. P. Cohen, P. Morrison, and L. Dao, “Covid-19 image data collection,” arXiv preprint arXiv: 2003.11597, 2020.
    [30]
    COVID-19 X rays. [Online]. Available: https://www.kaggle.com/andrewmvd/convid19-x-rays
    [31]
    D. S. Kermany, M. Goldbaum, W. J. Cai, C. C. S. Valentim, H. Y. Liang, S. L. Baxter, A. McKeown, G. Yang, X. K. Wu, F. B. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Z. Zhang, L. H Zheng, R. Hou, W. Shi, X. Fu, Y. O. Duan, V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. L. Li, X. B. Wang, M. A. Singer, X. D. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. M. Xia, and K. Zhang, “Identifying medical diagnoses and treatable diseases by image-based deep learning,” Cell, vol. 172, no. 5, pp. 1122–1131.E9, Feb. 1122.
    [32]
    X. S. Wang, Y. F. Peng, L. Lu, Z. Y. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 3462–3471.
    [33]
    K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition, ” arXiv preprint arXiv: 1409.1556, 2014.
    [34]
    C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 1–9.
    [35]
    K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep residual learning for image recognition, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770–778.
    [36]
    C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning, ” in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, California, USA, 2017.
    [37]
    B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning, ” in Proc. 5th Int. Conf. Learning Representations, Toulon, France, 2017.
    [38]
    F. Chollet, “Xception: Deep learning with depthwise separable convolutions, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 1800–1807.
    [39]
    A. G. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications, ” arXiv preprint arXiv: 1704.04861, 2017.
    [40]
    G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 2261–2269.
    [41]
    Y. L. Tian, X. Li, K. F. Wang, and F. Y. Wang, “Training and testing object detectors with virtual images,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 539–546, Mar. 2018. doi: 10.1109/JAS.2017.7510841
    [42]
    A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem, ” in Proc. Int. Interdisciplinary PhD Workshop, Swinoujście, Poland, 2018, pp. 117–122.
    [43]
    H. T. Zaw, N. Maneerat, and K. Y. Win, “Brain tumor detection based on naïve Bayes classification, ” in Proc. 5th Int. Conf. Engineering, Applied Sciences and Technology, Luang Prabang, Laos, 2019.
    [44]
    Z. F. Wu, Q. Xu, J. N. Li, C. B. Fu, Q. Xuan, and Y. Xiang, “Passive indoor localization based on CSI and naive Bayes classification,” IEEE Trans. Syst.,Man Cybern. Syst., vol. 48, no. 9, pp. 1566–1577, Sept. 2018. doi: 10.1109/TSMC.2017.2679725
    [45]
    G. Singh, B. Kumar, L. Gaur, and A. Tyagi, “Comparison between multinomial and Bernoulli naïve Bayes for text classification, ” in Proc. Int. Conf. Automation, Computational and Technology Management, London, United Kingdom, 2019, pp. 593–596.
    [46]
    X. J. Wang, “Ladle furnace temperature prediction model based on large-scale data with random forest,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 770–774, Oct. 2017. doi: 10.1109/JAS.2016.7510247
    [47]
    P. Anirudh Hebbar, M. V. Kumar, and H. A. Sanjay, “DRAP: Decision tree and random forest based classification model to predict diabetes, ” in Proc. 1st Int. Conf. Advances in Information Technology, Chikmagalur, India, 2019, pp. 271–276.
    [48]
    H. Zhang, Z. J. Fu, and K. I. Shu, “Recognizing ping-pong motions using inertial data based on machine learning classification algorithms,” IEEE Access, vol. 7, pp. 167055–167064, Nov. 2019. doi: 10.1109/ACCESS.2019.2953772
    [49]
    S. C. Gao, M. C. Zhou, Y. R. Wang, J. J. Cheng, H. Yachi, and J. H. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 2, pp. 601–614, Feb. 2019. doi: 10.1109/TNNLS.2018.2846646
    [50]
    S. H. Wan, Y. Liang, Y. Zhang, and M. Guizani, “Deep multi-layer perceptron classifier for behavior analysis to estimate Parkinson’s disease severity using smartphones,” IEEE Access, vol. 6, pp. 36825–36833, Jul. 2018. doi: 10.1109/ACCESS.2018.2851382
    [51]
    H. I. Dino and M. B. Abdulrazzaq, “Facial expression classification based on SVM, KNN and MLP classifiers, ” in Proc. Int. Conf. Advanced Science and Engineering, Zakho - Duhok, Iraq, 2019, pp. 70–75.
    [52]
    S. C. Zhang, X. L. Li, M. Zong, X. F. Zhu, and R. L. Wang, “Efficient kNN classification with different numbers of nearest neighbors,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1774–1785, May 2018. doi: 10.1109/TNNLS.2017.2673241
    [53]
    W. C. Xing and Y. L. Bei, “Medical health big data classification based on kNN classification algorithm,” IEEE Access, vol. 8, pp. 28808–28819, Nov. 2019.
    [54]
    D. Zhu, H. Zhu, X. M. Liu, H. Li, F. W. Wang, and H. Li, “Achieve efficient and privacy-preserving medical primary diagnosis based on kNN, ” in Proc. 27th Int. Conf. Computer Communication and Networks, Hangzhou, China, 2018, pp. 1–9.
    [55]
    P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection model and strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018. doi: 10.1109/JAS.2017.7510817
    [56]
    C. Loconsole, G. D. Cascarano, A. Lattarulo, A. Brunetti, G. F. Trotta, D. Buongiorno, I. Bortone, I. De Feudis, G. Losavio, V. Bevilacqua, and E. Di Sciascio, “A comparison between ANN and SVM classifiers for Parkinson’s disease by using a model-free computer-assisted handwriting analysis based on biometric signals, ” in Proc. Int. Joint Conf. Neural Networks, Rio de Janeiro, Brazil, 2018, pp. 1–8.
    [57]
    W. J. Chen and Z. Zhang, “Hand gesture recognition using sEMG signals based on support vector machine, ” in Proc. IEEE 8th Joint Int. Information Technology and Artificial Intelligence Conf., Chongqing, China, 2019, pp. 230–234.
    [58]
    L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.
    [59]
    T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. R. Acharya, “Automated detection of COVID-19 cases using deep neural networks with X-ray images,” Comput. Biol. Med, vol. 121, pp. 103792, Jun. 2020. doi: 10.1016/j.compbiomed.2020.103792
    [60]
    A. Rosebrock, Detecting COVID-19 in X-ray images with Keras, TensorFlow, and deep learning. [Online]. Available: https://www.pyimagesearch.com/2020/03/16/detecting-covid-19-in-x-ray-images-with-keras-tensorflow-and-deep-learning/
    [61]
    A. M. V. Dadario, COVID-19 X rays. [Online]. Available: https://www.kaggle.com/andrewmvd/convid19-x-rays/metadata

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(10)

    Article Metrics

    Article views (1398) PDF downloads(104) Cited by()

    Highlights

    • This paper presents a fast approach for detecting COVID-19 from a chest x-ray.
    • Two datasets and 144 pairs of feature extractors and classifiers are analyzed.
    • Accuracy, F1-Score, FPR, time, Nemenyi test, and t-SNE evaluate the proposed method.
    • Accuracies of 98.5% and 95.6% and test time <1s were achieved in the datasets used.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return