A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 4
Jun.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Jing Huang, Yimin Chen, Xiaoyan Peng, Lin Hu and Dongpu Cao, "Study on the Driving Style Adaptive Vehicle Longitudinal Control Strategy," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1107-1115, July 2020. doi: 10.1109/JAS.2020.1003261
Citation: Jing Huang, Yimin Chen, Xiaoyan Peng, Lin Hu and Dongpu Cao, "Study on the Driving Style Adaptive Vehicle Longitudinal Control Strategy," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1107-1115, July 2020. doi: 10.1109/JAS.2020.1003261

Study on the Driving Style Adaptive Vehicle Longitudinal Control Strategy

doi: 10.1109/JAS.2020.1003261
Funds:  This work was supported by the National Natural Science Foundation of China (51775178, 51875049), and Hunan Province Natural Science Outstanding Youth Fund (2019JJ20017)
More Information
  • This paper presents a fusion control strategy of adaptive cruise control (ACC) and collision avoidance (CA), which takes into account a driver’s behavioral style. First, a questionnaire survey was performed to identify driver type, and the corresponding driving behavioral data were collected via driving simulator experiments, which served as the template data for the online identification of driver type. Then, the driver-adaptive ACC/CA fusion control strategy was designed, and its effect was verified by virtual experiments. The results indicate that the proposed control strategy could achieve the fusion control of ACC and CA successfully and improve driver adaptability and comfort.


  • loading
  • [1]
    F. Jiménez, J. E. Naranjo, J. J. Anaya, F. García, A. Ponz, and J. M. Armingol, “Advanced driver assistance system for road environments to improve safety and efficiency,” Trans. Res. Procedia, vol. 14, pp. 2245–2254, 2016. doi: 10.1016/j.trpro.2016.05.240
    R. Yasrab, N. J. Gu, and X. C. Zhang, “An encoder-decoder based convolution neural network (CNN) for future advanced driver assistance system (ADAS),” Appl. Sci., vol. 7, no. 4, pp. 312, Mar. 2017. doi: 10.3390/app7040312
    J. Huang, Z. X. Ji, X. Y. Peng, and L. Hu, “Driving style adaptive lane-changing trajectory planning and control,” China J. Highway Transport, vol. 32, no. 6, pp. 226–239, 247, Jun. 2019.
    H. M. Xiong, L. N. Boyle, J. Moeckli, B. R. Dow, and T. L. Brown, “Use patterns among early adopters of adaptive cruise control,” Hum. Factors:J. Hum. Factors Ergon. Soc., vol. 54, no. 5, pp. 722–733, Feb. 2012. doi: 10.1177/0018720811434512
    L. Hu, X. T. Hu, J. Wan, M. Lin, and J. Huang, “The injury epidemiology of adult riders in vehicle-two-wheeler crashes in China, Ningbo, 2011–2015,” J. Saf. Res., vol. 72, pp. 21–28, Feb. 2020. doi: 10.1016/j.jsr.2019.12.011
    L. Hu, J. Ou, J. Huang, Y. M. Chen, and D. P. Cao, “A review of research on traffic conflicts based on intelligent vehicles,” IEEE Access, vol. 8, pp. 24471–24483, Jan. 2020. doi: 10.1109/ACCESS.2020.2970164
    F. M. Poó, O. Taubman-Ben-Ari, R. D. Ledesma, and C. M. Díaz-Lázaro, “Reliability and validity of a Spanish-language version of the multidimensional driving style inventory,” Trans. Res. Part F:Traffic Psychol. Behav., vol. 17, pp. 75–87, Feb. 2013. doi: 10.1016/j.trf.2012.10.003
    S. Moon and K. Yi, “Human driving data-based design of a vehicle adaptive cruise control algorithm,” Veh. Syst. Dyn., vol. 46, no. 8, pp. 661–690, Jun. 2008. doi: 10.1080/00423110701576130
    G. F. B. Piccinini, C. M. Rodrigues, M. Leitão, and A. Simões, “Reaction to a critical situation during driving with adaptive cruise control for users and non-users of the system,” Saf. Sci., vol. 72, pp. 116–126, Feb. 2015. doi: 10.1016/j.ssci.2014.09.008
    W. J. Schakel, C. M. Gorter, J. C. F. De Winter, and B. van Arem, “Driving characteristics and adaptive cruise control-a naturalistic driving study,” IEEE Intell. Trans. Syst. Mag., vol. 9, no. 2, pp. 17–24, Apr. 2017. doi: 10.1109/MITS.2017.2666582
    F. A. Mullakkal-Babu, M. Wang, B. Van Arem, and R. Happee, “Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy,” in Proc. IEEE 19th Int. Conf. Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016, pp. 308−315.
    J. Q. Wang, L. Zhang, D. Z. Zhangm and K. Q. Li, “An adaptive longitudinal driving assistance system based on driver characteristics,” IEEE Trans. Intelligent Transportation Systems, vol. 14, no. 1, pp. 1–12, Jul. 2013. doi: 10.1109/TITS.2012.2205143
    H. M. Xiong and L. N. Boyle, “Drivers’ adaptation to adaptive cruise control: Examination of automatic and manual braking,” IEEE Trans. Intelligent Transportation Systems, vol. 13, no. 3, pp. 1468–1473, Apr. 2012. doi: 10.1109/TITS.2012.2192730
    S. Moon, I. Moon, and K. Yi, “Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance,” Control Eng. Pract., vol. 17, no. 4, pp. 442–455, Apr. 2009. doi: 10.1016/j.conengprac.2008.09.006
    L. Hu, Y. X. Zhong, W. Hao, B. Moghimi, J. Huang, X. Zhang, and R. H. Du., “Optimal route algorithm considering traffic light and energy consumption,” IEEE Access, vol. 6, pp. 59695–59704, Sept. 2018. doi: 10.1109/ACCESS.2018.2871843
    K. Gao, F. R. Han, P. P. Dong, N. X. Xiong, and R. H. Du, “Connected vehicle as a mobile sensor for real time queue length at signalized intersections,” Sensors, vol. 19, no. 9, pp. 2059, May 2019. doi: 10.3390/s19092059
    D. B. Zhao, Z. H. Hu, Z. P. Xia, C. Alippi, Y. H. Zhu, and D. Wang, “Full-range adaptive cruise control based on supervised adaptive dynamic programming,” Neurocomputing, vol. 125, pp. 57–67, Feb. 2014. doi: 10.1016/j.neucom.2012.09.034
    L. H. Luo, P. Li, and H. Wang, “Model predictive control for adaptive cruise control with multi-objectives: Comfort, fuel-economy, safety and car-following,” J. Zhejiang Univ. SCI. A, vol. 11, no. 3, pp. 191–201, Feb. 2010. doi: 10.1631/jzus.A0900374
    L. Hu, X. H. Wu, J. Huang, Y. Peng, and W. G. Liu, “Investigation of clusters and injuries in pedestrian crashes using GIS in Changsha, China,” Saf. Sci., vol. 127, pp. 104710, Jul. 2020. doi: 10.1016/j.ssci.2020.104710
    A. Weißmann, D. Görges, and X. H. Lin, “Energy-optimal adaptive cruise control combining model predictive control and dynamic programming,” Control Eng. Pract., vol. 72, pp. 125–137, Mar. 2018. doi: 10.1016/j.conengprac.2017.12.001
    G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. Van De Molengraft, and M. Steinbuch, “String-stable CACC design and experimental validation: a frequency-domain approach,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4268–4279, Nov. 2010. doi: 10.1109/TVT.2010.2076320
    L. Hu, X. S. Hu, Y. H. Che, F. Feng, X. K. Lin, and Z. Y. Zhang, “Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering,” Appl. Energy, vol. 262, pp. 114569, Mar. 2020. doi: 10.1016/j.apenergy.2020.114569
    K. C. Dey, L. Yan, X. J. Wang, Y. Wang, H. Y. Shen, M. Chowdhury, L. Yu, C. X. Qiu, and V. Soundararaj, “A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC),” IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 2, pp. 491–509, Feb. 2016. doi: 10.1109/TITS.2015.2483063
    T. Hirose, Y. Ohtsuka, and M. Gokan, “Activation timing of a collision avoidance system with V2V communication,” SAE, SAE Tech. Paper 2017-01-0039, 2017.
    S. Y. Gelbal, S. Zhu, G. A. Anantharaman, B. A. Guvenc, and L. Guvenc, “Cooperative collision avoidance in a connected vehicle environment,” SAE, SAE Tech. Paper 2019-01-0488, 2019.
    I. Koglbauer, J. Holzinger, A. Eichberger, and C. Lex, “Drivers’ interaction with adaptive cruise control on dry and snowy roads with various tire-road grip potentials,” J. Adv. Transp., vol. 2017, pp. 5496837, Jan. 2017.
    M. G. Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Spatial-based predictive control and geometric corridor planning for adaptive cruise control coupled with obstacle avoidance,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 38–50, Jan. 2018. doi: 10.1109/TCST.2017.2664722
    J. Huang, X. Luo, and X. Y. Peng, “A novel classification method for a driver’s cognitive stress level by transferring interbeat intervals of the ECG signal to pictures,” Sensors, vol. 20, no. 5, pp. 1340, 2020. doi: 10.3390/s20051340
    P. Nilsson, O. Hussien, A. Balkan, Y. X. Chen, A. D. Ames, J. W. Grizzle, N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction adaptive cruise control: Two approaches,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1294–1307, Jul. 2016. doi: 10.1109/TCST.2015.2501351
    Y. T. Ba, W. Zhang, G. Salvendy, A. S. K. Cheng, and P. Ventsislavova, “Assessments of risky driving: A Go/No-Go simulator driving task to evaluate risky decision-making and associated behavioral patterns,” Appl. Ergon., vol. 52, pp. 265–274, Jan. 2016. doi: 10.1016/j.apergo.2015.07.020
    O. Taubman-Ben-Ari, M. Mikulincer, and O. Gillath, “The multidimensional driving style inventory—scale construct and validation,” Accid. Anal. Prev., vol. 36, no. 3, pp. 323–332, May 2004. doi: 10.1016/S0001-4575(03)00010-1
    O. Taubman-Ben-Ari and V. Skvirsky, “The multidimensional driving style inventory a decade later: Review of the literature and re-evaluation of the scale,” Accid. Anal. Prev., vol. 93, pp. 179–188, Aug. 2016. doi: 10.1016/j.aap.2016.04.038
    C. Lu, F. Q. Hu, D. P. Cao, J. W. Gong, Y. Xing, and Z. R. Li, “Virtual-to-real knowledge transfer for driving behavior recognition: Framework and a case study,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6391–6402, Jul. 2019. doi: 10.1109/TVT.2019.2917025
    Y. Xing, C. Lv, H. J. Wang, D. P. Cao, E. Velenis, and F. Y. Wang, “Driver activity recognition for intelligent vehicles: A deep learning approach,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5379–5390, Jun. 2019. doi: 10.1109/TVT.2019.2908425
    B. K. Sahu, T. K. Pati, J. R. Nayak, S. Panda, and S. K. Kar, “A novel hybrid LUS–TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 58–69, Jan. 2016. doi: 10.1016/j.ijepes.2015.07.020
    X. K. Wang and L. Wang, “Design and research based on fuzzy PID-parameters self-tuning controller with MATLAB,” New Technol. New Process, vol. 11, pp. 26–28, 2016.
    S. Kantor and T. Stárek, “Design of algorithms for payment telematics systems evaluating driver’s driving style,” Trans. Transp. Sci., vol. 7, no. 1, pp. 9–16, Jan. 2014. doi: 10.2478/v10158-012-0049-5
    L. M. Niu, H. Y. Yang, and Y. H. Zhang, “Intelligent HEV fuzzy logic control strategy based on identification and prediction of drive cycle and driving trend,” World J. Eng. Technol., vol. 3, no. 3C, pp. 215–226, Oct. 2015.
    X. X. Xiong, L. Chen, and J. Liang, “New framework of vehicle collision prediction by combining SVM and HMM,” IEEE Trans. Intelligent Transportation Systems, vol. 19, no. 3, pp. 699–710, Mar. 2018. doi: 10.1109/TITS.2017.2699191
    Y. Peng, C. J. Fan, L. Hu, S. L. Peng, P. P. Xie, F. G. Wu, and S. E. Yi, “Tunnel driving occupational environment and hearing loss in train drivers in China,” Occup. Environ. Med., vol. 76, no. 2, pp. 97–104, Feb. 2019. doi: 10.1136/oemed-2018-105269


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (957) PDF downloads(60) Cited by()


    • A driver-adaptive fusion control strategy of Adaptive Cruise Control and Collision Avoidance was proposed.
    • Different styles of divers’ driving behavioural data were collected via driving simulator experiments, corresponding driving behaviour characteristics were extracted and used in the driver-adaptive control.
    • Real-time recognition of driving style was achieved based on fuzzy reasoning rule.
    • The effect of the fusion control strategy was validated by virtual experiments.


    DownLoad:  Full-Size Img  PowerPoint