IEEE/CAA Journal of Automatica Sinica
Citation:  Jiahai Wang, Yuyan Sun, Zizhen Zhang and Shangce Gao, "Solving Multitrip Pickup and Delivery Problem With Time Windows and Manpower Planning Using Multiobjective Algorithms," IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 11341153, July 2020. doi: 10.1109/JAS.2020.1003204 
[1] 
L. Wang and J. Lu, “A memetic algorithm with competition for the capacitated green vehicle routing problem,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 516–526, 2019. doi: 10.1109/JAS.2019.1911405

[2] 
J. Wang, L. Yuan, Z. Zhang, S. Gao, Y. Sun, and Y. Zhou, “Multiobjective multiple neighborhood search algorithms for multiobjective fleet size and mix locationrouting problem with time windows,” IEEE Trans. Systems,Man,and Cybernetics:Systems, 2019. doi: 10.1109/TSMC.2019.2912194

[3] 
J. Wang, T. Weng, and Q. Zhang, “A twostage multiobjective evolutionary algorithm for multiobjective multidepot vehicle routing problem with time windows,” IEEE Trans. Cybernetics, vol. 49, no. 7, pp. 2467–2478, 2019. doi: 10.1109/TCYB.2018.2821180

[4] 
J. Wang, Y. Zhou, Y. Wang, J. Zhang, C. P. Chen, and Z. Zheng, “Multiobjective vehicle routing problems with simultaneous delivery and pickup and time windows: formulation, instances and algorithms,” IEEE Trans. Cybernetics, vol. 46, no. 3, pp. 582–594, 2016. doi: 10.1109/TCYB.2015.2409837

[5] 
G. Kim, Y.S. Ong, C. K. Heng, P. S. Tan, and N. A. Zhang, “City vehicle routing problem (city VRP): A review,” IEEE Trans. Intelligent Transportation Systems, vol. 16, no. 4, pp. 1654–1666, 2015. doi: 10.1109/TITS.2015.2395536

[6] 
U. Derigs and M. Pullmann, “A computational study comparing different multiple neighbourhood strategies for solving rich vehicle routing problems,” IMA J. Management Mathematics, vol. 27, no. 1, pp. 3–23, 2016. doi: 10.1093/imaman/dpt022

[7] 
T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with timewindows,” Computers&Operations Research, vol. 40, no. 1, pp. 475–489, 2013.

[8] 
T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “A unified solution framework for multiattribute vehicle routing problems,” European J. Operational Research, vol. 234, no. 3, pp. 658–673, 2014. doi: 10.1016/j.ejor.2013.09.045

[9] 
A. Lim, Z. Zhang, and H. Qin, “Pickup and delivery service with manpower planning in Hong Kong public hospitals,” Transportation Science, vol. 51, no. 2, pp. 688–705, 2016.

[10] 
Z. Zhang, H. Qin, K. Wang, H. He, and T. Liu, “Manpower allocation and vehicle routing problem in nonemergency ambulance transfer service,” Transportation Research Part E, vol. 106, pp. 45–59, 2017. doi: 10.1016/j.tre.2017.08.002

[11] 
Y. Cai, Z. Zhang, S. Guo, H. Qin, and A. Lim, “A treebased tabu search for the manpower allocation problem with time windows and jobteaming constraints,” in Proc. 23rd Int. Joint Conf. Artificial Intelligence, 2013, pp. 496–502.

[12] 
Y. Yu, S. Gao, Y. Wang, and Y. Todo, “Global optimumbased search differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 379–394, 2019. doi: 10.1109/JAS.2019.1911378

[13] 
M. A. Nayeem, M. M. Islam, and X. Yao, “Solving transit network design problem using manyobjective evolutionary approach,” IEEE Trans. Intelligent Transportation Systems, vol. 20, no. 10, pp. 3952–3963, 2019. doi: 10.1109/TITS.2018.2883511

[14] 
A. Gupta, C. K. Heng, Y.S. Ong, P. S. Tan, and A. N. Zhang, “A generic framework for multicriteria decision support in ecofriendly urban logistics systems,” Expert Systems With Applications, vol. 71, pp. 288–300, 2017. doi: 10.1016/j.eswa.2016.09.033

[15] 
A. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P. N. Suganthan, and Q. Zhang, “Multiobjective evolutionary algorithms: A survey of the state of the art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49, 2011. doi: 10.1016/j.swevo.2011.03.001

[16] 
A. Blot, M.É. Kessaci, and L. Jourdan, “Survey and unification of local search techniques in metaheuristics for multiobjective combinatorial optimisation,” J. Heuristics, vol. 24, no. 6, pp. 853–877, 2018. doi: 10.1007/s1073201893811

[17] 
Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007. doi: 10.1109/TEVC.2007.892759

[18] 
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGAII,” IEEE Trans. Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. doi: 10.1109/4235.996017

[19] 
M. Diana and M. M. Dessouky, “A new regret insertion heuristic for solving largescale dialaride problems with time windows,” Transportation Research Part B:Methodological, vol. 38, no. 6, pp. 539–557, 2004. doi: 10.1016/j.trb.2003.07.001

[20] 
F. Arnold and K. Sörensen, “Knowledgeguided local search for the vehicle routing problem,” Computers&Operations Research, vol. 105, pp. 32–46, 2019.

[21] 
S. Abdullah and H. Turabieh, “On the use of multi neighbourhood structures within a tabubased memetic approach to university timetabling problems,” Information Sciences, vol. 191, pp. 146–168, 2012. doi: 10.1016/j.ins.2011.12.018

[22] 
H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima, “Use of heuristic local search for singleobjective optimization in multiobjective memetic algorithms,” in Proc. Int. Conf. Parallel Problem Solving from Nature. Springer, 2008, pp. 743–752.

[23] 
O. Bräysy and M. Gendreau, “Vehicle routing problem with time windows, part I: Route construction and local search algorithms,” Transportation Science, vol. 39, no. 1, pp. 104–118, 2005. doi: 10.1287/trsc.1030.0056

[24] 
E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu, “Hyperheuristics: A survey of the state of the art,” J. Operational Research Society, vol. 64, no. 12, pp. 1695–1724, 2013. doi: 10.1057/jors.2013.71

[25] 
N. Pillay and R. Qu, HyperHeuristics: Theory and Applications, Natural Computing Series. Springer, 2018.

[26] 
N. Hitomi and D. Selva, “A classification and comparison of credit assignment strategies in multiobjective adaptive operator selection,” IEEE Trans. Evolutionary Computation, vol. 21, no. 2, pp. 294–314, 2017. doi: 10.1109/TEVC.2016.2602348

[27] 
W. Hu and G. G. Yen, “Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system,” IEEE Trans. Evolutionary Computation, vol. 19, no. 1, pp. 1–18, 2015. doi: 10.1109/TEVC.2013.2296151

[28] 
I. Das and J. E. Dennis, “Normalboundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems,” SIAM J. Optimization, vol. 8, no. 3, pp. 631–657, 1998. doi: 10.1137/S1052623496307510

[29] 
F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945. doi: 10.2307/3001968

[30] 
J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011. doi: 10.1016/j.swevo.2011.02.002

[31] 
J. AlcaláFdez, L. Sánchez, S. García, M. del Jesus, S. Ventura, J. Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, and F. Haerrera, “KEEL: A software tool to assess evolutionary algorithms for data mining problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009. doi: 10.1007/s005000080323y

[32] 
Y. Mei, K. Tang, and X. Yao, “Decompositionbased memetic algorithm for multiobjective capacitated arc routing problem,” IEEE Trans. Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011. doi: 10.1109/TEVC.2010.2051446

[33] 
R. L. Pinheiro, D. LandaSilva, and J. Atkin, “A technique based on tradeoff maps to visualise and analyse relationships between objectives in optimisation problems,” J. MultiCriteria Decision Analysis, vol. 24, no. 12, pp. 37–56, 2017. doi: 10.1002/mcda.1604

[34] 
R. L. Pinheiro, D. LandaSilva, W. Laesanklang, and A. A. Constantino, “An efficient application of goal programming to tackle multiobjective problems with recurring fitness landscapes,” in Proc. 7th Int. Conf. Operations Research and Enterprise Systems, 2018.

[35] 
Z. Zhang, Y. Sun, H. Xie, Y. Teng, and J. Wang, “GMMA: GPU based multiobjective memetic algorithms for vehicle routing problem with route balancing,” Applied Intelligence, vol. 49, no. 1, pp. 63–78, 2019. doi: 10.1007/s1048901812106

[36] 
Y. Xu and R. Qu, “Solving multiobjective multicast routing problems by evolutionary multiobjective simulated annealing algorithms with variable neighbourhoods,” J. Operational Research Society, vol. 62, no. 2, pp. 313–325, 2011. doi: 10.1057/jors.2010.138

[37] 
H. Li and D. LandaSilva, “An adaptive evolutionary multiobjective approach based on simulated annealing,” Evolutionary Computation, vol. 19, no. 4, pp. 561–595, 2011. doi: 10.1162/EVCO_a_00038

[38] 
E. Burke and J. Landa Silva, “The influence of the fitness evaluation method on the performance of multiobjective search algorithms,” European J. Operational Research, vol. 169, no. 3, pp. 875–897, 2006. doi: 10.1016/j.ejor.2004.08.028

[39] 
L. Ke, Q. Zhang, and R. Battiti, “Hybridization of decomposition and local search for multiobjective optimization,” IEEE Trans. Cybernetics, vol. 44, no. 10, pp. 1808–1820, 2014. doi: 10.1109/TCYB.2013.2295886

[40] 
B. Derbel, A. Liefooghe, Q. Zhang, H. Aguirre, and K. Tanaka, “Multiobjective local search based on decomposition,” Lecture Notes in Computer Science, vol. 9921 LNCS, pp. 431–441, 2016. doi: 10.1007/9783319458236_40

[41] 
J. Shi, Q. Zhang, and J. Sun, “PPLS/D: Parallel Pareto local search based on decomposition,” IEEE Trans. Cybernetics, vol. 50, no. 3, pp. 1068–1071, 2020.

[42] 
J. Wang and T. Kumbasar, “Parameter optimization of interval type2 fuzzy neural networks based on PSO and BBBC methods,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 247–257, 2019. doi: 10.1109/JAS.2019.1911348

[43] 
S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neural model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601–604, 2019. doi: 10.1109/TNNLS.2018.2846646
