IEEE/CAA Journal of Automatica Sinica
Citation:  Yufang Chang, Guisheng Zhai, Bo Fu and Lianglin Xiong, "Quadratic Stabilization of Switched Uncertain Linear Systems: A Convex Combination Approach," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 11161126, Sept. 2019. doi: 10.1109/JAS.2019.1911681 
[1] 
D. Liberzon and A. S. Morse, " Basic problems in stability and design of switched systems,” IEEE Control Systems Magazine, vol. 19, no. 5, pp. 59–70, 1999. doi: 10.1109/37.793443

[2] 
R. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, " Perspectives and results on the stability and stabilizability of hybrid systems,” Proc. the IEEE, vol. 88, no. 7, pp. 1069–1082, 2000. doi: 10.1109/5.871309

[3] 
R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, " Stability criteria for switched and hybrid systems,” SIAM Review, vol. 49, no. 4, pp. 545–592, 2007. doi: 10.1137/05063516X

[4] 
R. Goebel, R. Sanfelice, and A. Teel, " Hybrid dynamical systems,” IEEE Control Systems Magazine, vol. 29, no. 2, pp. 28–93, 2009. doi: 10.1109/MCS.2008.931718

[5] 
H. Lin and P. J. Antsaklis, " Stability and stabilizability of switched linear systems: a survey of recent results,” IEEE Trans. Automatic Control, vol. 54, no. 2, pp. 308–322, 2009. doi: 10.1109/TAC.2008.2012009

[6] 
Y. Lu and W. Zhang, " On switching stabilizability for continuoustime switched linear systems,” IEEE Trans. Automatic Control, vol. 61, no. 11, pp. 3515–3520, 2016. doi: 10.1109/TAC.2016.2514844

[7] 
H. Yang, H. Li, B. Jiang, and V. Cocquempot, " Fault tolerant control of switched systems: a generalized separation principle,” IEEE Trans. Control Systems Technology, vol. 27, no. 2, pp. 553–565, 2019. doi: 10.1109/TCST.2017.2785808

[8] 
A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems. London: SpringerVerlag, 2000.

[9] 
D. Liberzon, Switching in Systems and Control. Boston: Birkhäuser, 2003.

[10] 
Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design. London: Springer, 2005.

[11] 
M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic, Singapore: Springer, 2018.

[12] 
J. Dong and G. H. Yang, " H_{∞} controller synthesis via switched PDC scheme for discretetime TS fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 17, no. 3, pp. 544–555, 2009. doi: 10.1109/TFUZZ.2008.924328

[13] 
J. Dong and G. H. Yang, " Dynamic output feedback control synthesis for continuoustime TS fuzzy systems via a switched fuzzy control scheme,” IEEE Trans. Systems,Man,and Cybernetics,Part B (Cybernetics)

[14] 
D. Du, B. Jiang, and P. Shi, Fault Tolerant Control for Switched Linear Systems, Springer International Publishing, Switzerland, 2015.

[15] 
J. Dong and G. H. Yang, " Dynamic output feedback control synthesis for discretetime TS fuzzy systems via switching fuzzy controllers,” Fuzzy Sets and Systems, vol. 160, no. 4, pp. 482–499, 2009. doi: 10.1016/j.fss.2008.04.009

[16] 
W. Xiang, G. Zhai, and C. Briat, " Stability analysis for LTI control systems with controller failures and its application in failure tolerant control,” IEEE Trans. Automatic Control, vol. 61, no. 3, pp. 811–816, 2016. doi: 10.1109/TAC.2015.2449031

[17] 
G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, " Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach,” Int. J. Systems Science, vol. 32, no. 8, pp. 1055–1061, 2001. doi: 10.1080/00207720116692

[18] 
E. Feron, " Quadratic stability of switched systems via state and output feedback,” Technical Report CICSP468 (MIT)

[19] 
M. S. Branicky, " Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. Automatic Control, vol. 43, no. 4, pp. 475–482, 1998. doi: 10.1109/9.664150

[20] 
E. Skafidas, R. J. Evans, A. V. Savkins, and I. R. Petersen, " Stability results for switched control systems,” Automatica, vol. 35, no. 4, pp. 553–564, 1998.

[21] 
M. A. Wicks, P. Peleties, and R. A. DeCarlo, " Switched controller design for the quadratic stabilization of a pair of unstable linear systems,” European J. Control, vol. 4, no. 2, pp. 140–147, 1998. doi: 10.1016/S09473580(98)701086

[22] 
J. C. Geromel and P. Colaneri, " Stability and stabilization of continuoustime switched linear systems,” SIAM J. Control and Optimization, vol. 45, no. 5, pp. 1915–1930, 2006. doi: 10.1137/050646366

[23] 
J. C. Geromel, P. Colaneri, and P. Bolzern, " Dynamic output feedback control of switched linear systems,” IEEE Trans. Automatic Control, vol. 53, no. 3, pp. 720–733, 2008. doi: 10.1109/TAC.2008.919860

[24] 
P. P. Khargonekar, I. R. Petersen, and K. Zhou, " Robust stabilization of uncertain linear systems: quadratic stabilizability and H_{∞} control theory,” IEEE Trans. Automatic Control, vol. 35, no. 3, pp. 356–361, 1990. doi: 10.1109/9.50357

[25] 
Z. Ji, X. Guo, L. Wang, and G. Xie, " Robust H_{∞} control and stabilization of uncertain switched linear systems: a multiple Lyapunov functions approach,” J. Dynamic Systems,Measurement,and Control, vol. 128, no. 3, pp. 696–700, 2005.

[26] 
G. Zhai, " Quadratic stabilizability of discretetime switched systems via state and output feedback,” in Proc. 40th IEEE Conf. Decision and Control, 2001, pp. 2165–2166.

[27] 
G. Zhai, H. Lin, and P. J. Antsaklis, " Quadratic stabilizability of switched linear systems with polytopic uncertainties,” Int. J. Control, vol. 76, no. 7, pp. 747–753, 2003. doi: 10.1080/0020717031000114968

[28] 
Y. Chang, B. Fu, and G. Zhai, " Quadratic stabilization of switched uncertain linear systems,” in Proc. 30th Chinese Control and Decision Conf., Shenyang, China, 2018, pp. 4734–4738.

[29] 
A. Packard, " Gain scheduling via linear fractional transformation,” Systems &Control Letters, vol. 22, no. 2, pp. 79–92, 1994.

[30] 
Z. Ji, L. Wang, G. Xie, and F. Hao, " Linear matrix inequality approach to quadratic stabilisation of switched systems,” IEE Proc. – Control Theory and Applications, vol. 151, no. 3, pp. 289–294, 2004. doi: 10.1049/ipcta:20040306

[31] 
R. E. Skelton, T. Iwasaki, and K. M. Grigoriadis, A Unified Algebraic Approach to Linear Control Design. London: Taylor & Francis, 1998.

[32] 
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.

[33] 
I. R. Petersen, " A stabilization algorithm for a class of uncertain linear systems,” Systems &Control Letters, vol. 8, no. 4, pp. 351–357, 1987.

[34] 
J. Zhao and G. M. Dimirovski, " Quadratic stability of a class of switched nonlinear systems,” IEEE Trans. Automatic Control, vol. 49, no. 4, pp. 574–578, 2004. doi: 10.1109/TAC.2004.825611

[35] 
A. F. Filippov, Differential Equations with Discontinuous RightHand Sides, Kluwer Academic, 1988.

[36] 
G. Zhai, M. Ikeda, and Y. Fujisaki, " Decentralized

[37] 
J. P. Hespanha and A. S. Morse, " Stability of switched systems with average dwelltime,” in Proc. 38th IEEE Conf. Decision and Control, Phoenix, USA, 1999, pp. 2655–2660.

[38] 
C. Yuan and F. Wu, " Hybrid control for switched linear systems with average dwell time,” IEEE Trans. Automatic Control, vol. 60, no. 1, pp. 240–245, 2015. doi: 10.1109/TAC.2014.2322941

[39] 
W. Xiang, " Necessary and sufficient condition for stability of switched uncertain linear systems under dwelltime constraint,” IEEE Trans. Automatic Control, vol. 61, no. 11, pp. 3619–3624, 2016. doi: 10.1109/TAC.2016.2524996

[40] 
P. Bolzern and W. Spinelli, " Quadratic stabilization of a switched affine system about a nonequilibrium point,” in Proc. American Control Conf., Boston, USA, 2004, pp. 3890–3895.

[41] 
X. Xu and G. Zhai, " Practical stability and stabilization of hybrid and switched systems,” IEEE Trans. Automatic Control, vol. 50, no. 11, pp. 1897–1903, 2005. doi: 10.1109/TAC.2005.858680

[42] 
X. Xu, G. Zhai, and S. He, " On practical asymptotic stabilizability of switched affine systems,” Nonlinear Analysis:Hybrid Systems, vol. 2, no. 1, pp. 196–208, 2008. doi: 10.1016/j.nahs.2007.07.003

[43] 
C. C. Scharlau, M. C. de Oliveira, A. Trofino, and T. J. M. Dezuo, " Switching rule design for affine switched systems using a maxtype composition rule,” Systems &Control Letters, vol. 68, pp. 1–8, 2014.

[44] 
J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, " State space solutions to standard H_{2} and H_{∞} control problems,” IEEE Trans. Automatic Control, vol. 34, no. 8, pp. 831–847, 1989. doi: 10.1109/9.29425

[45] 
G. FerrariTrecate, F. Cuzzola, D. Mignone, and M. Morari, " Analysis of discretetime piecewise affine and hybrid systems,” Automatica, vol. 38, no. 12, pp. 2139–2146, 2002. doi: 10.1016/S00051098(02)001425

[46] 
A. Trofino, D. Assmann, C. C. Scharlau, and D. F. Coutinho, " Switching rule design for switched dynamic systems with affine vector fields,” IEEE Trans. Automatic Control, vol. 54, no. 9, pp. 2215–2222, 2009. doi: 10.1109/TAC.2009.2026848

[47] 
C. Huang, G. Zhai, and W. Li, " Quadratic stabilization and ${{\cal{L}}_2}$ gain analysis of switched affine systems,” in Proc. 29th Chinese Control and Decision Conf., Chongqing, China, 2017, pp. 2018– 2023.

[48] 
W. Li, C. Huang, and G. Zhai, " Quadratic performance analysis of switched affine timevarying systems,” Int. J. Applied Mathematics and Computer Science, vol. 28, no. 3, pp. 429–440, 2018. doi: 10.2478/amcs20180032

[49] 
G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, " Disturbance attenuation properties of timecontrolled switched systems,” J. the Franklin Institute, vol. 338, no. 7, pp. 765–779, 2001. doi: 10.1016/S00160032(01)000308

[50] 
G. Zhai and X. Chen, " Stability analysis of switched linear stochastic systems,” Proc. the Institution of Mechanical Engineers,Part I:J. Systems and Control Engineering, vol. 222, no. 7, pp. 661–669, 2008. doi: 10.1243/09596518JSCE569

[51] 
M. S. Alwan and X. Liu, " Recent results in stochastic hybrid dynamical systems,” J. Control and Decision, vol. 3, no. 1, pp. 68–103, 2016. doi: 10.1080/23307706.2016.1143787

[52] 
Z. Duan, G. Zhai, and Z. Xiang, " Exponential consensus for hierarchical multiagent systems with switching topology and interlayer communication delay,” IET Control Theory &Applications, vol. 10, no. 4, pp. 451–460, 2016.

[53] 
K. Yang and H. Ji, " Hierarchical control of a class of uncertain linear systems,” J. Control and Decision, vol. 3, no. 2, pp. 119–131, 2016. doi: 10.1080/23307706.2015.1068713

[54] 
J. Mao, Z. Xiang, G. Zhai, and J. Guo, " Adaptive practical stabilization of uncertain nonlinear systems via sampleddata control,” Nonlinear Dynamics, vol. 92, no. 4, pp. 1679–1694, 2018. doi: 10.1007/s1107101841549
