A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 5
Sep.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Min Zhou, Hairong Dong, Petros A. Ioannou, Yanbo Zhao and Fei-Yue Wang, "Guided Crowd Evacuation: Approaches and Challenges," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1081-1094, Sept. 2019. doi: 10.1109/JAS.2019.1911672
Citation: Min Zhou, Hairong Dong, Petros A. Ioannou, Yanbo Zhao and Fei-Yue Wang, "Guided Crowd Evacuation: Approaches and Challenges," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1081-1094, Sept. 2019. doi: 10.1109/JAS.2019.1911672

Guided Crowd Evacuation: Approaches and Challenges

doi: 10.1109/JAS.2019.1911672
Funds:  This work was supported jointly by the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2019ZK001), Fundamental Research Funds for Central Universities (2019JBM079), and Postdoctoral Innovative Talent Project (BX20190029)
More Information
  • Evacuation leaders and/or equipment provide route and exit information for people and guide them to the expected destinations, which could make crowd evacuation more efficient in case of emergency. The purpose of this paper is to provide an overview of recent advances in guided crowd evacuation. Different guided crowd evacuation approaches are classified according to guidance approaches and technologies. A comprehensive analysis and comparison of crowd evacuation with static signage, dynamic signage, trained leader, mobile devices, mobile robot and wireless sensor networks are presented based on a single guidance mode perspective. In addition, the different evacuation guidance systems that use high-tech means such as advanced intelligent monitoring techniques, AI techniques, computer technology and intelligent inducing algorithms are reviewed from a system’s perspective. Future researches in the area of crowd evacuation are also discussed.

     

  • loading
  • [1]
    X. P. Zheng, T. K. Zhong, and M. T. Liu, " Modeling crowd evacuation of a building based on seven methodological approaches,” Build. Environ., vol. 44, no. 3, pp. 437–445, Mar. 2009. doi: 10.1016/j.buildenv.2008.04.002
    [2]
    H. J. Huang and R. Y. Guo, " Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits,” Phys. Rev. E, vol. 78, no. 2, pp. 021131, Aug. 2008. doi: 10.1103/PhysRevE.78.021131
    [3]
    R. Lovreglio, A. Fonzone, L. dell’Olio, and D. Borri, " A study of herding behaviour in exit choice during emergencies based on random utility theory,” Safety Sci., vol. 82, pp. 421–431, Feb. 2016. doi: 10.1016/j.ssci.2015.10.015
    [4]
    D. Helbing, I. Farkas, and T. Vicsek, " Simulating dynamical features of escape panic,” Nature, vol. 407, no. 6803, pp. 487–490, Sep. 2000. doi: 10.1038/35035023
    [5]
    M. Zhou, H. R. Dong, F. Y. Wang, Q. L. Wang, and X. X. Yang, " Modeling and simulation of pedestrian dynamical behavior based on a fuzzy logic approach,” Inform. Sci., vol. 360, pp. 112–130, Sep. 2016. doi: 10.1016/j.ins.2016.04.018
    [6]
    D. R. Parisi and C. O. Dorso, " Microscopic dynamics of pedestrian evacuation,” Phys. A, vol. 354, pp. 606–618, Aug. 2005. doi: 10.1016/j.physa.2005.02.040
    [7]
    R. Y. Guo and H. J. Huang, " Logit-based exit choice model of evacuation in rooms with internal obstacles and multiple exits,” Chinese Phys. B, vol. 19, no. 3, pp. 030501, Mar. 2010. doi: 10.1088/1674-1056/19/3/030501
    [8]
    Y. X. Zhao, M. F. Li, X. Lu, L. J. Tian, Z. Y. Yu, K. Huang, Y. Wang, and T. Li, " Optimal layout design of obstacles for panic evacuation using differential evolution,” Phys. A, vol. 465, pp. 175–194, Jan. 2017. doi: 10.1016/j.physa.2016.08.021
    [9]
    M. Isobe, D. Helbing, and T. Nagatani, " Experiment, theory, and simulation of the evacuation of a room without visibility,” Phys. Rev. E, vol. 69, no. 6, pp. 066132, Jun. 2004. doi: 10.1103/PhysRevE.69.066132
    [10]
    D. M. Shi and B. H. Wang, " Evacuation of pedestrians from a single room by using snowdrift game theories,” Phys. Rev. E, vol. 87, no. 2, pp. 022802, Feb. 2013. doi: 10.1103/PhysRevE.87.022802
    [11]
    M. Manley, Y. S. Kim, K. Christensen, and A. Chen, " Airport emergency evacuation planning: An agent-based simulation study of dirty bomb scenarios,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 46, no. 10, pp. 1390–1403, Oct. 2016. doi: 10.1109/TSMC.2015.2497213
    [12]
    M. Zhou, H. R. Dong, Y. B. Zhao, P. A. Ioannou, and F. Y. Wang, " Optimization of crowd evacuation with leaders in urban rail transit stations,” IEEE Trans. Intell. Transport. Syst., to be published. doi: 10.1109/TITS.2018.2886415
    [13]
    Z. Zhang, L. M. Jia, and Y. Qin, " Optimal number and location planning of evacuation signage in public space,” Safety Sci., vol. 91, pp. 132–147, Jan. 2017. doi: 10.1016/j.ssci.2016.07.021
    [14]
    H. Xie, L. Filippidis, E. R. Galea, D. Blackshields, and P. J. Lawrence, " Experimental analysis of the effectiveness of emergency signage and its implementation in evacuation simulation,” Fire Mater., vol. 36, pp. 5–6, Aug.–Oct. 2012.
    [15]
    M. Zhou, H. R. Dong, J. L. Liu, X. M. Yao, and Y. D. Li, " Modeling of crowd dynamics with emergency signs via modified social force model,” in Proc. IEEE 14th Int. Conf. Control and Automation (ICCA), Anchorage, AK, USA, 2018, pp. 235–240.
    [16]
    N. Pelechano and N. I. Badler, " Modeling crowd and trained leader behavior during building evacuation,” IEEE Comput. Graph. Appl., vol. 26, no. 6, pp. 80–86, Nov.–Dec. 2006. doi: 10.1109/MCG.2006.133
    [17]
    M. Zhou, H. R. Dong, Y. B. Zhao, Y. H. Zhang, and P. A. Ioannou, " Optimal number and location planning of evacuation leader in subway stations,” IFAC-PapersOnLine, vol. 51, no. 9, pp. 410–415, 2018. doi: 10.1016/j.ifacol.2018.07.067
    [18]
    P. Arthur and R. Passini, Wayfinding: People, Signs, and Architecture. New York: McGraw-Hill, 1992.
    [19]
    H. Xie, " Investigation into the interaction of people with signage systems and its implementation within evacuation models,” Ph.D. dissertation, University of Greenwich, 2011.
    [20]
    W. L. Grosshandler, N. Bryner, D. Madrzykowski, and K. Kuntz, " Report of the technical investigation of the station nightclub fire,” National Institute of Standards and Technology, 2005.
    [21]
    L. Filippidis, E. R. Galea, S. Gwynne, and P. J. Lawrence, " Representing the influence of signage on evacuation behavior within an evacuation model,” J. Fire Prot. Eng., vol. 16, no. 1, pp. 37–73, Feb. 2006. doi: 10.1177/1042391506054298
    [22]
    B. L. Collins, " Visibility of exit signs and directional indicators,” J. Illuminat. Eng. Soc., vol. 20, no. 1, pp. 117–133, 1991. doi: 10.1080/00994480.1991.10748931
    [23]
    B. L. Collins, M. S. Dahir, and D. Madrzykowski, " Visibility of exit signs in clear and smoky conditions,” Fire Technol., vol. 29, no. 2, pp. 154–182, May 1993. doi: 10.1007/BF01038537
    [24]
    B. L. Collins, M. S. Dahir, and D. Madrzykowski, " Evaluation of exit signs in clear and smoke conditions,” National Institute of Standards and Technology, 1990.
    [25]
    K. E. Boyce, T. J. Shields, and G. W. H. Silcock, " Toward the characterization of building occupancies for fire safety engineering: capability of people with disabilities to read and locate exit signs,” Fire Technol., vol. 35, no. 1, pp. 79–86, Feb. 1999. doi: 10.1023/A:1015395318183
    [26]
    L. T. Wong and K. C. Lo, " Experimental study on visibility of exit signs in buildings,” Build. Environ., vol. 42, no. 4, pp. 1836–1842, Apr. 2007. doi: 10.1016/j.buildenv.2006.02.011
    [27]
    M. T. Liu, X. P. Zheng, and Y. Cheng, " Determining the effective distance of emergency evacuation signs,” Fire Safety J., vol. 46, no. 6, pp. 364–369, Aug. 2011. doi: 10.1016/j.firesaf.2011.06.002
    [28]
    A. Motamedi, Z. Wang, N. Yabuki, T. Fukuda, and T. Michikawa, " Signage visibility analysis and optimization system using BIM-enabled virtual reality (VR) environments,” Adv. Eng. Inform., vol. 32, pp. 248–262, Apr. 2017. doi: 10.1016/j.aei.2017.03.005
    [29]
    K. Nassar, " Sign visibility for pedestrians assessed with agent-based simulation,” Trans. Res. Record:J. Trans. Res. Board, vol. 2264, no. 1, pp. 18–26, Jan. 2011. doi: 10.3141/2264-03
    [30]
    W. L. Wang, S. M. Lo, S. B. Liu, and H. Kuang, " Microscopic modeling of pedestrian movement behavior: interacting with visual attractors in the environment,” Trans. Res. Part C:Emerg. Technol., vol. 44, pp. 21–33, Jul. 2014. doi: 10.1016/j.trc.2014.03.009
    [31]
    E. Galea, L. Filippidis, P. Lawrence, and S. Gwynne, " Visibility catchment area of exits and signs,” in Proc. 9th Int. Fire Science and Engineering Conf., Greenwich, London, UK, 2001, pp. 1529–1534.
    [32]
    H. Xie, L. Filippidis, S. Gwynne, E. R. Galea, D. Blackshields, and P. J. Lawrence, " Signage legibility distances as a function of observation angle,” J. Fire Prot. Eng., vol. 17, no. 1, pp. 41–64, Feb. 2007. doi: 10.1177/1042391507064025
    [33]
    H. Xie, L. Filippidis, E. R. Galea, S. Gwynne, D. Blackshields, and P. J. Lawrence, " Experimental study and theoretical analysis of signage legibility distances as a function of observation angle,” in Proc. Pedestrian and Evacuation Dynamics 2005, N. Waldau, P. Gattermann, H. Knoflacher, and M. Schreckenberg, Eds. Berlin, Heidelberg: Springer, 2007, pp. 131–143.
    [34]
    E. Ronchi, D. Nilsson, and S. M. V. Gwynne, " Modelling the impact of emergency exit signs in tunnels,” Fire Technol., vol. 48, no. 4, pp. 961–988, Oct. 2012. doi: 10.1007/s10694-012-0256-y
    [35]
    G. Y. Jeon and W. H. Hong, " An experimental study on how phosphorescent guidance equipment influences on evacuation in impaired visibility,” J. Loss Prev. Process Ind., vol. 22, no. 6, pp. 934–942, Nov. 2009. doi: 10.1016/j.jlp.2009.08.008
    [36]
    Z. L. Yuan, H. F. Jia, L. F. Zhang, and L. Bian, " A social force evacuation model considering the effect of emergency signs,” Simulation, vol. 94, no. 8, pp. 723–737, Aug. 2018. doi: 10.1177/0037549717741350
    [37]
    C. X. Chen, Q. Li, S. Kaneko, J. Chen, and X. H. Cui, " Location optimization algorithm for emergency signs in public facilities and its application to a single-floor supermarket,” Fire Safety J., vol. 44, no. 1, pp. 113–120, Jan. 2009. doi: 10.1016/j.firesaf.2008.05.006
    [38]
    J. C. Chu and C. Y. Yeh, " Emergency evacuation guidance design for complex building geometries,” J. Infrastruct. Syst., vol. 18, no. 4, pp. 288–296, Dec. 2012. doi: 10.1061/(ASCE)IS.1943-555X.0000080
    [39]
    C. H. Tang, W. T. Wu, and C. Y. Lin, " Using virtual reality to determine how emergency signs facilitate way-finding,” Appl. Ergonom., vol. 40, no. 4, pp. 722–730, Jul. 2009. doi: 10.1016/j.apergo.2008.06.009
    [40]
    M. Kobes, I. Helsloot, B. De Vries, J. G. Post, N. Oberijé, and K. Groenewegen, " Way finding during fire evacuation; an analysis of unannounced fire drills in a hotel at night,” Build. Environ., vol. 45, no. 3, pp. 537–548, Mar. 2010. doi: 10.1016/j.buildenv.2009.07.004
    [41]
    G. Cosma, E. Ronchi, and D. Nilsson, " Way-finding lighting systems for rail tunnel evacuation: a virtual reality experiment with oculus rift ®,” J. Trans. Saf. Secur., vol. 8, no. sup1, pp. 101–117, May 2016.
    [42]
    S. T. Kwee-Meier, A. Mertens, and C. M. Schlick, " Age-related differences in decision-making for digital escape route signage under strenuous emergency conditions of tilted passenger ships,” Appl. Ergonom., vol. 59, pp. 264–273, Mar. 2017. doi: 10.1016/j.apergo.2016.09.001
    [43]
    L. B. Fu, S. C. Cao, W. G. Song, and J. Fang, " The influence of emergency signage on building evacuation behavior: an experimental study,” Fire Mater., vol. 43, no. 1, pp. 22–33, Jan.–Feb. 2019. doi: 10.1002/fam.2665
    [44]
    E. R. Galea, H. Xie, and P. J. Lawrence, " Experimental and survey studies on the effectiveness of dynamic signage systems,” Fire Safety Sci., vol. 11, pp. 1129–1143, Jan. 2014. doi: 10.3801/IAFSS.FSS.11-1129
    [45]
    E. R. Galea, H. Xie, S. Deere, D. Cooney, and L. Filippidis, " An international survey and full-scale evacuation trial demonstrating the effectiveness of the active dynamic signage system concept,” Fire Mater., vol. 41, no. 5, pp. 493–513, Aug.–Sep. 2017. doi: 10.1002/fam.2414
    [46]
    E. R. Galea, H. Xie, S. Deere, D. Cooney, and L. Filippidis, " Evaluating the effectiveness of an improved active dynamic signage system using full scale evacuation trials,” Fire Safety J., vol. 91, pp. 908–917, Jul. 2017. doi: 10.1016/j.firesaf.2017.03.022
    [47]
    H. M. Lin, S. Chen, J. Kao, Y. Lee, G. L. K. Hsiao, and C. Y. Lin, " Applying active dynamic signage system in complex underground construction,” Int. J. Sci. Eng. Res., vol. 8, no. 2, pp. 1–10, Feb. 2017.
    [48]
    N. Langner and C. Kray, " Assessing the impact of dynamic public signage on mass evacuation,” in Proc. Int. Symp. Pervasive Displays, Copenhagen, Denmark, 2014, pp. 136–141.
    [49]
    A. Desmet and E. Gelenbe, " Capacity based evacuation with dynamic exit signs,” in Proc. IEEE Int. Conf. Pervasive Computing and Communication Workshops, Budapest, Hungary, 2014, pp. 332–337.
    [50]
    J. Cho, G. Lee, and S. Lee, " An automated direction setting algorithm for a smart exit sign,” Automat. Construct., vol. 59, pp. 139–148, Nov. 2015. doi: 10.1016/j.autcon.2015.05.004
    [51]
    J. Olander, E. Ronchi, R. Lovreglio, and D. Nilsson, " Dissuasive exit signage for building fire evacuation,” Appl. Ergonom., vol. 59, pp. 84–93, Mar. 2017. doi: 10.1016/j.apergo.2016.08.029
    [52]
    J. C. Chu, A. Y. Chen, and Y. F. Lin, " Variable guidance for pedestrian evacuation considering congestion, hazard, and compliance behavior,” Trans. Res. Part C:Emerg. Technol., vol. 85, pp. 664–683, Dec. 2017. doi: 10.1016/j.trc.2017.10.009
    [53]
    P. K. Sharma, B. W. Kwon, and J. H. Park, " DSS-SL: dynamic signage system based on SDN with LiFi communication for smart buildings,” in Proc. Advances in Computer Science and Ubiquitous Computing, J. Park, V. Loia, G. Yi, and Y. Sung, Eds. Singapore: Springer, 2018, pp. 805–810.
    [54]
    A. Veichtlbauer and T. Pfeiffenberger, " Dynamic evacuation guidance as safety critical application in building automation,” in Proc. Int. Workshop on Critical Information Infrastructures Security, S. Bologna, B. Hammerli, D. Gritzalis, and S. Wolthusen, Eds. Berlin, Heidelberg: Springer, 2013, pp. 58–69.
    [55]
    R. Olyazadeh, " Evaluating dynamic signage for emergency evacuation using an immersive video environment,” M.S. thesis, Institut für Geoinformatik der Universität Münster, 2013.
    [56]
    F. Aubé and R. Shield, " Modeling the effect of leadership on crowd flow dynamics,” in Proc. Int. Conf. Cellular Automata, P. M. A. Sloot, B. Chopard, and A. G. Hoekstra, Eds. Berlin, Heidelberg: Springer, 2004, pp. 601–611.
    [57]
    N. Pelechano, K. O’Brien, B. Silverman, and N. Badler, " Crowd simulation incorporating agent psychological models, roles and communication,” Pennsylvania Univ. Philadelphia Center for Human Modeling and Simulation, Tech. Rep., 2005.
    [58]
    Q. G. Ji and C. Gao, " Simulating crowd evacuation with a leader-follower model,” IJCSES, vol. 1, no. 4, pp. 249–252, Oct. 2007.
    [59]
    W. F. Yuan and K. H. Tan, " Cellular automata model for simulation of effect of guiders and visibility range,” Curr. Appl. Phys., vol. 1, no. 5, pp. 1014–1023, Sep. 2009.
    [60]
    M. Okada and T. Ando, " Optimization of personal distribution for evacuation guidance based on vector field,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Francisco, CA, USA, 2011, pp. 3673–3678.
    [61]
    X. L. Wang, X. P. Zheng, and Y. Cheng, " Evacuation assistants: An extended model for determining effective locations and optimal numbers,” Phys. A, vol. 391, no. 6, pp. 2245–2260, Mar. 2012. doi: 10.1016/j.physa.2011.11.051
    [62]
    C. Vihas, I. G. Georgoudas, and G. C. Sirakoulis, " Follow-the-leader cellular automata based model directing crowd movement,” in Proc. Int. Conf. Cellular Automata, G. C. Sirakoulis and S. Bandini, Eds. Berlin, Heidelberg: Springer, 2012, pp. 752–762.
    [63]
    M. I. Sumam and K. Vani, " Agent based evacuation simulation using leader-follower model,” Int. J. Sci. Eng. Res., vol. 4, no. 8, pp. 1–6, Aug. 2013.
    [64]
    Y. C. Yang, D. V. Dimarogonas, and X. M. Hu, " Optimal leader-follower control for crowd evacuation,” in Proc. 52nd Annu. Conf. Decision and Control, Florence, Italy, 2013, pp. 2769–2774.
    [65]
    L. Hou, J. G. Liu, X. Pan, and B. H. Wang, " A social force evacuation model with the leadership effect,” Phys. A, vol. 400, pp. 93–99, Apr. 2014. doi: 10.1016/j.physa.2013.12.049
    [66]
    X. X. Yang, H. R. Dong, Q. L. Wang, Y. Chen, and X. M. Hu, " Guided crowd dynamics via modified social force model,” Phys. A, vol. 411, pp. 63–73, Oct. 2014. doi: 10.1016/j.physa.2014.05.068
    [67]
    E. Spartalis, I. G. Georgoudas, and G. C. Sirakoulis, " CA crowd modeling for a retirement house evacuation with guidance,” in Proc. 11th Int. Conf. Cellular Automata for Research and Industry, Kraków, Poland, 2014, pp. 481–491.
    [68]
    P. McCormack and T. Y. Chen, " Optimizing leader proportion and behavior for evacuating buildings,” in Proc. Symp. Agent Directed Simulation, Tampa, Florida, 2014, Article No. 13.
    [69]
    X. L. Wang, W. Guo, and X. P. Zheng, " Effects of evacuation assistant’s leading behavior on the evacuation efficiency: Information transmission approach,” Chin. Phys. B, vol. 24, no. 7, pp. 070504, Jul. 2015. doi: 10.1088/1674-1056/24/7/070504
    [70]
    X. L. Wang, W. Guo, Y. Cheng, and X. P. Zheng, " Understanding the centripetal effect and evacuation efficiency of evacuation assistants: using the extended dynamic communication field model,” Safety Sci., vol. 74, pp. 150–159, Apr. 2015. doi: 10.1016/j.ssci.2014.12.007
    [71]
    X. X. Yang, H. R. Dong, X. M. Yao, X. B. Sun, Q. L. Wang, and M. Zhou, " Necessity of guides in pedestrian emergency evacuation,” Phys. A, vol. 442, pp. 397–408, Jan. 2016. doi: 10.1016/j.physa.2015.08.020
    [72]
    W. H. Li, Y. Li, P. Yu, J. H. Gong, and S. Shen, " The trace model: a model for simulation of the tracing process during evacuations in complex route environments,” Simul. Model. Pract. Th., vol. 60, pp. 108–121, Jan. 2016. doi: 10.1016/j.simpat.2015.09.011
    [73]
    X. L. Wang, W. Guo, and X. P. Zheng, " Information guiding effect of evacuation assistants in a two-channel segregation process using multiinformation communication field model,” Safety Sci., vol. 88, pp. 16–25, Oct. 2016. doi: 10.1016/j.ssci.2016.04.005
    [74]
    S. C. Cao, W. G. Song, and W. Lv, " Modeling pedestrian evacuation with guiders based on a multi-grid model,” Phys. Lett. A, vol. 380, no. 4, pp. 540–547, Feb. 2016. doi: 10.1016/j.physleta.2015.11.028
    [75]
    Y. Ma, R. K. K. Yuen, and E. W. M. Lee, " Effective leadership for crowd evacuation,” Phys. A, vol. 450, pp. 333–341, May 2016. doi: 10.1016/j.physa.2015.12.103
    [76]
    Y. Ma, E. W. M. Lee, and M. Shi, " Dual effects of guide-based guidance on pedestrian evacuation,” Phys. Lett. A, vol. 381, no. 22, pp. 1837–1844, Jun. 2017. doi: 10.1016/j.physleta.2017.03.050
    [77]
    Y. Ikeda and M. Inoue, " An evacuation route planning for safety route guidance system after natural disaster using multi-objective genetic algorithm,” Procedia Comput. Sci., vol. 56, pp. 1323–1331, 2016.
    [78]
    E. Boukas, I. Kostavelis, A. Gasteratos, and G. C. Sirakoulis, " Robot guided crowd evacuation,” IEEE Trans. Automat. Sci. Eng., vol. 12, no. 2, pp. 739–751, Apr. 2015. doi: 10.1109/TASE.2014.2323175
    [79]
    L. Chittaro and D. Nadalutti, " A mobile RFID-based system for supporting evacuation of buildings,” in Proc. Int. Workshop on Mobile Information Technology for Emergency Response, J. Löffler and M. Klann, Eds. Berlin, Heidelberg: Springer, 2009, pp. 22–31.
    [80]
    Y. Inoue, A. Sashima, T. Ikeda, and K. Kurumatani, " Indoor emergency evacuation service on autonomous navigation system using mobile phone,” in Proc. 2nd Int. Symp. Universal Communication, Osaka, Japan, 2008, pp. 79–85.
    [81]
    K. M. Rahman, T. Alam, and M. Chowdhury, " Location based early disaster warning and evacuation system on mobile phones using OpenStreetMap,” in Proc. IEEE Conf. Open Systems, Kuala Lumpur, Malaysia, 2012, pp. 1–6.
    [82]
    L. W. Chen, J. H. Cheng, and Y. C. Tseng, " Optimal path planning with spatial-temporal mobility modeling for individual-based emergency guiding,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 45, no. 12, pp. 1491–1501, Dec. 2015. doi: 10.1109/TSMC.2015.2445875
    [83]
    T. Wada and T. Takahashi, " Evacuation guidance system using everyday use smartphones,” in Proc. Int. Conf. Signal-Image Technology & Internet-Based Systems, Kyoto, Japan, 2013, pp. 860–864.
    [84]
    L. Chu, " A RFID-based hybrid building fire evacuation system on mobile phone,” in Proc. 6th Int. Conf. Intelligent Information Hiding and Multimedia Signal Processing, Darmstadt, Germany, 2010, pp. 155–158.
    [85]
    L. Chu and S. J. Wu, " A real-time fire evacuation system with cloud computing,” J. Converg. Inform. Technol., vol. 7, no. 7, pp. 208–215, Apr. 2012. doi: 10.4156/jcit.vol7.issue7.26
    [86]
    A. Fujihara and H. Miwa, " Effect of traffic volume in real-time disaster evacuation guidance using opportunistic communications,” in Proc. 4th Int. Conf. Intelligent Networking and Collaborative Systems, Bucharest, Romania, 2012, pp. 457–462.
    [87]
    A. Fujihara and H. Miwa, " Disaster evacuation guidance using opportunistic communication: the potential for opportunity-based service,” in Big Data and Internet of Things: a Roadmap for Smart Environments, N. Bessis and C. Dobre, Eds. Switzerland: Springer, 2014, pp. 425–446.
    [88]
    Y. Iizuka and K. Iizuka, " Disaster evacuation assistance system based on multi-agent cooperation,” in Proc. 48th Hawaii Int. Conf. System Sciences, Kauai, HI, USA, 2015, pp. 173–181.
    [89]
    L. Chittaro and D. Nadalutti, " Presenting evacuation instructions on mobile devices by means of location-aware 3D virtual environments,” in Proc. 10th Int. Conf. Human Computer Interaction with Mobile Devices and Services, Amsterdam, The Netherlands, 2008, pp. 395–398.
    [90]
    A. Mulloni, H. Seichter, and D. Schmalstieg, " Handheld augmented reality indoor navigation with activity-based instructions,” in Proc. 13th Int. Conf. Human Computer Interaction with Mobile Devices and Services, Stockholm, Sweden, 2011, pp. 211–220.
    [91]
    A. Fujihara and T. Yanagizawa, " Proposing an extended iBeacon system for indoor route guidance,” in Proc. Int. Conf. Intelligent Networking and Collaborative Systems, Taipei, China, 2015, pp. 31–37.
    [92]
    D. A. Shell and M. J. Matarić, " Insights toward robot-assisted evacuation,” Adv. Robot., vol. 19, no. 8, pp. 797–818, Jan. 2005. doi: 10.1163/1568553055011483
    [93]
    E. Ferranti and N. Trigoni, " Robot-assisted discovery of evacuation routes in emergency scenarios,” in Proc. IEEE Int. Conf. Robotics and Automation, Pasadena, CA, USA, 2008, pp. 2824–2830.
    [94]
    A. Garrell, A. Sanfeliu, and F. Moreno-Noguer, " Discrete time motion model for guiding people in urban areas using multiple robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, St. Louis, MO, USA, 2009, pp. 486–491.
    [95]
    Y. D. Kim, Y. G. Kim, S. H. Lee, J. H. Kang, and J. An, " Portable fire evacuation guide robot system,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, St. Louis, MO, USA, 2009, pp. 2789–2794.
    [96]
    S. B. Zhang and Y. Guo, " Distributed multi-robot evacuation incorporating human behavior,” Asian J. Control, vol. 17, no. 1, pp. 34–44, Jan. 2015. doi: 10.1002/asjc.1047
    [97]
    B. Tang, C. Jiang, H. B. He, and Y. Guo, " Human mobility modeling for robot-assisted evacuation in complex indoor environments,” IEEE Trans. Hum.-Mach. Syst., vol. 46, no. 5, pp. 694–707, Oct. 2016. doi: 10.1109/THMS.2016.2571269
    [98]
    P. Robinette and A. M. Howard, " Trust in emergency evacuation robots,” in Proc. IEEE Int. Symp. Safety, Security, and Rescue Robotics (SSRR), College Station, TX, USA, 2012, pp. 1–6.
    [99]
    P. Robinette, A. R. Wagner, and A. M. Howard, " Building and maintaining trust between humans and guidance robots in an emergency,” Georgia Institute of Technology, pp. 78–83, 2013.
    [100]
    P. Robinette, W. C. Li, R. Allen, A. M. Howard, and A. R. Wagner, " Overtrust of robots in emergency evacuation scenarios,” in Proc. 11th ACM/IEEE Int. Conf. Human-Robot Interaction, Christchurch, New Zealand, 2016, pp. 101–108.
    [101]
    P. Robinette, A. R. Wagner, and A. M. Howard, " Investigating human-robot trust in emergency scenarios: methodological lessons learned,” in Proc. Robust Intelligence and Trust in Autonomous Systems, R. Mittu, D. Sofge, A. Wagner, and W. Lawless, Eds. Boston, MA: Springer, 2016, pp. 143–166.
    [102]
    Z. Q. Wan, C. Jiang, M. Fahad, Z. Ni, Y. Guo, and H. B. He, " Robot-assisted pedestrian regulation based on deep reinforcement learning,” IEEE Trans. Cybernet., pp. 1–14, Nov. 2018.
    [103]
    I. Sakour and H. S. Hu, " Robot-assisted crowd evacuation under emergency situations: a survey,” Robotics, vol. 6, no. 2, pp. 8, Mar. 2017. doi: 10.3390/robotics6020008
    [104]
    P. Robinette and A. M. Howard, " Incorporating a model of human panic behavior for robotic-based emergency evacuation,” in Proc. RO-MAN, Atlanta, GA, USA, 2011, pp. 47–52.
    [105]
    P. Robinette, P. A. Vela, and A. M. Howard, " Information propagation applied to robot-assisted evacuation,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Saint Paul, MN, USA, 2012, pp. 856–861.
    [106]
    C. Jiang, Z. Ni, Y. Guo, and H. B. He, " Learning human-robot interaction for robot-assisted pedestrian flow optimization,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 49, no. 4, pp. 797–813, Apr. 2019. doi: 10.1109/TSMC.2017.2725300
    [107]
    L. Shan, L. Chang, S. Y. Xu, C. Jiang, and Y. Guo, " Robot-assisted pedestrian flow control of a controlled pedestrian corridor,” Int. J. Adv. Robot. Syst., vol. 15, no. 6, pp. 1–11, Nov. 2018.
    [108]
    Y. C. Tseng, M. S. Pan, and Y. Y. Tsai, " Wireless sensor networks for emergency navigation,” Computer, vol. 39, no. 7, pp. 55–62, Jul. 2006. doi: 10.1109/MC.2006.248
    [109]
    L. W. Chen, J. H. Cheng, and Y. C. Tseng, " Evacuation time analysis and optimization for distributed emergency guiding based on wireless sensor networks,” in Proc. Int. Conf. Connected Vehicles and Expo, Beijing, China, 2012, pp. 130–135.
    [110]
    L. W. Chen, J. H. Cheng, and Y. C. Tseng, " Distributed emergency guiding with evacuation time optimization based on wireless sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 419–427, Feb. 2016. doi: 10.1109/TPDS.2015.2500722
    [111]
    Q. Li, M. De Rosa, and D. Rus, " Distributed algorithms for guiding navigation across a sensor network,” in Proc. 9th Annu. Int. Conf. Mobile Computing and Networking, San Diego, CA, USA, 2003, pp. 313–325.
    [112]
    M. S. Pan, C. H. Tsai, and Y. C. Tseng, " Emergency guiding and monitoring applications in indoor 3d environments by wireless sensor networks,” Int. J. Sens. Netw., vol. 1, pp. 1–2, Jan. 2006.
    [113]
    S. Li, A. Zhan, X. Wu, P. Yang, and G. Chen, " Efficient emergency rescue navigation with wireless sensor networks,” J. Inform. Sci. Eng., vol. 27, no. 1, pp. 51–64, Jan. 2011.
    [114]
    J. Y. Zhou, C. C. Wu, K. M. Yu, Y. Tsao, M. Y. Lei, C. J. Chen, S. T. Cheng, and Y. S. Huang, " Crowd guidance for emergency fire evacuation based on wireless sensor networks,” in Proc. 5th IET Int. Conf. Ubi-media Computing (U-Media 2012), Xining, China, 2012, pp. 303–308.
    [115]
    L. W. Chen, J. H. Cheng, Y. C. Tseng, L. C. Kuo, J. C. Chiang, and W. J. Lin, " Legs: a load-balancing emergency guiding system based on wireless sensor networks,” in Proc. IEEE Int. Conf. Pervasive Computing and Communications Workshops, Lugano, Switzerland, 2012, pp. 486–488.
    [116]
    A. A. Ahmed, M. Al-Shaboti, and A. Al-Zubairi, " An indoor emergency guidance algorithm based on wireless sensor networks,” in Proc. Int. Conf. Cloud Computing (ICCC), Riyadh, Saudi Arabia, 2015, pp. 1–5.
    [117]
    K. Yin, " Fire evacuation simulation for the case of a non-symmetrical metro station using wireless sensor network,” in Proc. 5th Int. Conf. Information Science and Technology (ICIST), Changsha, China, 2015, pp. 141–146.
    [118]
    L. C. Boer and D. J. Withington, " Auditory guidance in a smoke-filled tunnel,” Ergonomics, vol. 47, no. 10, pp. 1131–1140, Aug. 2004. doi: 10.1080/00140130410001695942
    [119]
    A. Ferscha and K. Zia, " Lifebelt: Crowd evacuation based on vibro-tactile guidance,” IEEE Pervas. Comput., vol. 9, no. 4, pp. 33–42, Oct.–Dec. 2010. doi: 10.1109/MPRV.2010.83
    [120]
    B. Wang, H. J. Li, Y. Rezgui, A. Bradley, and H. N. Ong, " BIM based virtual environment for fire emergency evacuation,” Sci. World J, vol. 2014, pp. Article ID 589016, May 2014.
    [121]
    H. R. Wang, Q. G. Chen, J. B. Yan, Z. Yuan, and D. Liang, " Emergency guidance evacuation in fire scene based on pathfinder,” in Proc. 7th Int. Conf. Intelligent Computation Technology and Automation (ICICTA), Changsha, China, 2014, pp. 226–230.
    [122]
    R. Kennedy, " Laser-aid fire evacuation guidance system,” U.S. Patent 8 077 017, Dec. 13, 2011.
    [123]
    N. Li and Y. J. Xu, " Evacuation modeling from the control perspective and corresponding sequential-based optimal evacuation guidance,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 1094–1102, May 2014. doi: 10.1109/TCST.2013.2272558
    [124]
    Q. Zhang, T. Chen, and X. Z. Lv, " New framework of intelligent evacuation system of buildings,” Procedia Eng., vol. 71, pp. 397–402, 2014. doi: 10.1016/j.proeng.2014.04.057
    [125]
    T. Sato, T. Izumi, and Y. Nakatani, " Tourist evacuation guidance support system for use in disasters,” in Proc. Int. Conf. Human-Computer Interaction, M. Kurosu, Ed. Heraklion, Crete, Greece: Springer, 2014, pp. 494–501.
    [126]
    H. C. Ran, L. H. Sun, and X. Z. Gao, " Influences of intelligent evacuation guidance system on crowd evacuation in building fire,” Automat. Construct., vol. 41, pp. 78–82, May 2014. doi: 10.1016/j.autcon.2013.10.022
    [127]
    K. M. Yu, C. S. Yu, C. C. Lien, S. T. Cheng, M. Y. Lei, H. P. Hsu, and N. Tsai, " Intelligent evacuation system integrated with image recognition technology,” in Proc. 8th Int. Conf. Ubi-Media Computing (UMEDIA), Colombo, Sri Lanka, 2015, pp. 23–28.
    [128]
    G. Bernardini, M. Azzolini, M. D’Orazio, and E. Quagliarini, " Intelligent evacuation guidance systems for improving fire safety of Italian-style historical theatres without altering their architectural characteristics,” J. Cult. Herit., vol. 22, pp. 1006–1018, Nov.–Dec. 2016. doi: 10.1016/j.culher.2016.06.008
    [129]
    F. Y. Wang, " Computational theory and method on complex system,” China Basic Sci., vol. 6, no. 5, pp. 3–10, May 2004.
    [130]
    F. Y. Wang, " Parallel system methods for management and control of complex systems,” Control Decision, vol. 19, no. 5, pp. 485–489, Jan. 2004.
    [131]
    F. Y. Wang, " Parallel control and management for intelligent transportation systems: concepts, architectures, and applications,” IEEE Trans. Intell. Trans. Syst., vol. 11, no. 3, pp. 630–638, Sep. 2010. doi: 10.1109/TITS.2010.2060218
    [132]
    X. B. Sun, H. R. Dong, B. Ning, T. X. Gao, and Q. J. Kong, " ACP-based emergency evacuation system,” Acta Autom. Sinica, vol. 40, no. 1, pp. 16–23, Jan. 2014.
    [133]
    B. Ning, T. Tang, H. R. Dong, D. Wen, D. R. Liu, S. G. Gao, and J. Wang, " An introduction to parallel control and management for high-speed railway systems,” IEEE Trans. Intell. Trans. Syst., vol. 12, no. 4, pp. 1473–1483, Dec. 2011. doi: 10.1109/TITS.2011.2159789
    [134]
    Y. L. Hu, X. Wang, and F. Y. Wang, " A quantitative study of factors influence on evacuation in building fire emergencies,” IEEE Trans. Comput. Soc. Syst., vol. 5, no. 2, pp. 544–552, Jun. 2018. doi: 10.1109/TCSS.2018.2823869
    [135]
    Y. L. Hu and X. W. Liu, " Optimization of grouping evacuation strategy in high-rise building fires based on graph theory and computational experiments,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1104–1112, Nov. 2018. doi: 10.1109/JAS.2018.7511231

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (4588) PDF downloads(140) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return