IEEE/CAA Journal of Automatica Sinica
Citation:  Bing He, Jiangtao Cui, Bin Xiao and Xuan Wang, "Image Analysis by Two Types of FranklinFourier Moments," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 10361051, July 2019. doi: 10.1109/JAS.2019.1911591 
[1] 
M. R. Teague, " Image analysis via the general theory of moments,” J. Optical Society of America, vol. 69, no. 8, pp. 1468, 1980.

[2] 
C. H. Teh and R. T. Chin, " On image analysis by the methods of moments,” IEEE Trans. Pattern Anal. Machine Intell, vol. 10, no. 4, pp. 496–513, 1988. doi: 10.1109/34.3913

[3] 
C. Kan and M. D. Srinath, " Invariant character recognition with zernike and orthogonal fouriermellin moments,” Pattern Recognition, vol. 35, no. 1, pp. 143C154, 2002.

[4] 
L. Wang and G. Healey, " Using zernike moments for the illumination and geometry invariant classification of multispectral texture,” IEEE Trans. Image Processing A Publication of the IEEE Signal Processing Society, vol. 7, no. 2, pp. 196–203, 1998. doi: 10.1109/83.660996

[5] 
D. Zhang and G. Lu, " Evaluation of mpeg7 shape descriptors against other shape descriptors,” Multimedia Systems, vol. 9, no. 1, pp. 15–30, 2003. doi: 10.1007/s005300020075y

[6] 
M. Hu, " Visual pattern recognition by moment invariants,” Information Theory IRE Trans., vol. 8, no. 2, pp. 179–187, 1962. doi: 10.1109/TIT.1962.1057692

[7] 
J. Flusser, B. Zitova, and T. Suk, Moments and Moment Invariants in Pattern Recognition, Wiley Publishing, 2009.

[8] 
R. Mukundan and K. R. Ramakrishnan, Moment Functions in Image AnalysisTheory and Applications, World Scientific,, 1998.

[9] 
H. T. Hu, Y. D. Zhang, C. Shao, and Q. Ju, " Orthogonal moments based on exponent functions: exponentfourier moments,” Pattern Recognition, vol. 47, no. 8, pp. 2596–2606, 2014. doi: 10.1016/j.patcog.2014.02.014

[10] 
S. X. Liao and M. Pawlak, " On image analysis by moments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 3, pp. 254–266, 1996. doi: 10.1109/34.485554

[11] 
Y. Xin, M. Pawlak, and S. Liao, " Accurate computation of zernike moments in polar coordinates,” IEEE Trans. Image Processing, vol. 16, no. 2, pp. 581–587, 2007. doi: 10.1109/TIP.2006.888346

[12] 
L. Kotoulas and I. Andreadis, " Accurate calculation of image moments,” IEEE Trans. Image Processing, vol. 16, no. 8, pp. 2028–2037, 2007. doi: 10.1109/TIP.2007.899621

[13] 
H. Lin, J. Si, and G. P. Abousleman, " Orthogonal rotationinvariant moments for digital image processing.,” IEEE Trans. Image Processing, vol. 17, no. 3, pp. 272, 2008. doi: 10.1109/TIP.2007.916157

[14] 
Y. Sheng and L. Shen, " Orthogonal fouriermellin moments for invariant pattern recognition,” J. Optical Society of America A, vol. 11, no. 6, pp. 1748–1757, 1994. doi: 10.1364/JOSAA.11.001748

[15] 
B. Xiao, L. Li, Y. Li, W. Li, and G. Wang, " Image analysis by fractionalorder orthogonal moments,” Information Sciences 382–383: 135–149, 2017.

[16] 
R. Mukundan, S. H. Ong, and P. A. Lee, " Image analysis by tchebichef moments,” IEEE Trans. Image Processing A Publication of the IEEE Signal Processing Society, vol. 10, no. 9, pp. 1357–64, 2001. doi: 10.1109/83.941859

[17] 
H. S. A. Barmak and J. Flusser, " Fast computation of krawtchouk moments,” Information Sciences, vol. 288, no. C, pp. 73–86, 2014.

[18] 
B. Xiao, Y. Zhang, L. Li, W. Li, and G. Wang, " Explicit krawtchouk moment invariants for invariant image recognition,” J. Electronic Imaging, vol. 25, no. 2, pp. 023002, 2016. doi: 10.1117/1.JEI.25.2.023002

[19] 
W. Chen, Z. Cai, and D. Qi, " Orthogonal franklin moments and its application for image representation,” Chinese J. Computers, vol. 37, no. 121, pp. 1–8, 2014.

[20] 
P. Franklin, " A set of continuous orthogonal functions,” Mathematische Annalen, vol. 100, no. 1, pp. 522–529, 1928. doi: 10.1007/BF01448860

[21] 
Z. C. Cai, W. Chen, D. X. Qi, and Z. S. Tang, " A class of general Franklin functions and its application,” Chinese J. Computers, vol. 32, no.10, pp. 20042013, 2009.

[22] 
Y. Meyer and R. D. Ryan, Wavelets: Algorithms and Applications. SIAM, l993.

[23] 
L. Guo, M. Dai, and M. Zhu, " Quaternion moment and its invariants for color object classification,” Information Sciences, vol. 273, no. 273, pp. 132–143, 2014.

[24] 
E. G. Karakasis, G. A. Papakostas, D. E. Koulouriotis, and V. D. Tourassis, " Generalized dual hahn moment invariants,” Pattern Recognition, vol. 46, no. 7, pp. 1998–2014, 2013. doi: 10.1016/j.patcog.2013.01.008

[25] 
H. Zhu, H. Shu, J. Liang, L. Luo, and J. L. Coatrieux, Image analysis by discrete orthogonal racah moments, in Proc. Int. Conf. Image Analysis and Recognition, 2005, pp. 524–531.

[26] 
B. Xiao, G. Y. Wang, and W. S. Li, " Radial shifted legendre moments for image analysis and invariant image recognition,” Image and Vision Computing, vol. 32, no. 12, pp. 994–1006, 2014. doi: 10.1016/j.imavis.2014.09.002

[27] 
Y. Chen and X. H. Xu, " Supervised orthogonal discriminant subspace projects learning for face recognition,” Neural Networks, vol. 50, no. 2, pp. 33, 2014.

[28] 
B. Xiao, J. F. Ma, and X. Wang, " Image analysis by besselfourier moments,” Pattern Recognition, vol. 43, no. 8, pp. 2620–2629, 2010. doi: 10.1016/j.patcog.2010.03.013
