Volume 6
							Issue 4 
						IEEE/CAA Journal of Automatica Sinica
| Citation: | Bing He, Jiangtao Cui, Bin Xiao and Xuan Wang, "Image Analysis by Two Types of Franklin-Fourier Moments," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1036-1051, July 2019. doi: 10.1109/JAS.2019.1911591 | 
	                | [1] | 
					 M. R. Teague, " Image analysis via the general theory of moments,” J. Optical Society of America, vol. 69, no. 8, pp. 1468, 1980. 
						
					 | 
			
| [2] | 
					 C. H. Teh and R. T. Chin, " On image analysis by the methods of moments,” IEEE Trans. Pattern Anal. Machine Intell, vol. 10, no. 4, pp. 496–513, 1988. doi:  10.1109/34.3913 
						
					 | 
			
| [3] | 
					 C. Kan and M. D. Srinath, " Invariant character recognition with zernike and orthogonal fouriermellin moments,” Pattern Recognition, vol. 35, no. 1, pp. 143C154, 2002. 
						
					 | 
			
| [4] | 
					 L. Wang and G. Healey, " Using zernike moments for the illumination and geometry invariant classification of multispectral texture,” IEEE Trans. Image Processing A Publication of the IEEE Signal Processing Society, vol. 7, no. 2, pp. 196–203, 1998. doi:  10.1109/83.660996 
						
					 | 
			
| [5] | 
					 D. Zhang and G. Lu, " Evaluation of mpeg-7 shape descriptors against other shape descriptors,” Multimedia Systems, vol. 9, no. 1, pp. 15–30, 2003. doi:  10.1007/s00530-002-0075-y 
						
					 | 
			
| [6] | 
					 M. Hu, " Visual pattern recognition by moment invariants,” Information Theory IRE Trans., vol. 8, no. 2, pp. 179–187, 1962. doi:  10.1109/TIT.1962.1057692 
						
					 | 
			
| [7] | 
					 J. Flusser, B. Zitova, and T. Suk, Moments and Moment Invariants in Pattern Recognition, Wiley Publishing, 2009. 
						
					 | 
			
| [8] | 
					 R. Mukundan and K. R. Ramakrishnan, Moment Functions in Image Analysis-Theory and Applications, World Scientific,, 1998. 
						
					 | 
			
| [9] | 
					 H. T. Hu, Y. D. Zhang, C. Shao, and Q. Ju, " Orthogonal moments based on exponent functions: exponent-fourier moments,” Pattern Recognition, vol. 47, no. 8, pp. 2596–2606, 2014. doi:  10.1016/j.patcog.2014.02.014 
						
					 | 
			
| [10] | 
					 S. X. Liao and M. Pawlak, " On image analysis by moments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 3, pp. 254–266, 1996. doi:  10.1109/34.485554 
						
					 | 
			
| [11] | 
					 Y. Xin, M. Pawlak, and S. Liao, " Accurate computation of zernike moments in polar coordinates,” IEEE Trans. Image Processing, vol. 16, no. 2, pp. 581–587, 2007. doi:  10.1109/TIP.2006.888346 
						
					 | 
			
| [12] | 
					 L. Kotoulas and I. Andreadis, " Accurate calculation of image moments,” IEEE Trans. Image Processing, vol. 16, no. 8, pp. 2028–2037, 2007. doi:  10.1109/TIP.2007.899621 
						
					 | 
			
| [13] | 
					 H. Lin, J. Si, and G. P. Abousleman, " Orthogonal rotation-invariant moments for digital image processing.,” IEEE Trans. Image Processing, vol. 17, no. 3, pp. 272, 2008. doi:  10.1109/TIP.2007.916157 
						
					 | 
			
| [14] | 
					 Y. Sheng and L. Shen, " Orthogonal fourier-mellin moments for invariant pattern recognition,” J. Optical Society of America A, vol. 11, no. 6, pp. 1748–1757, 1994. doi:  10.1364/JOSAA.11.001748 
						
					 | 
			
| [15] | 
					 B. Xiao, L. Li, Y. Li, W. Li, and G. Wang, " Image analysis by fractional-order orthogonal moments,” Information Sciences  382–383:  135–149, 2017. 
						
					 | 
			
| [16] | 
					 R. Mukundan, S. H. Ong, and P. A. Lee, " Image analysis by tchebichef moments,” IEEE Trans. Image Processing A Publication of the IEEE Signal Processing Society, vol. 10, no. 9, pp. 1357–64, 2001. doi:  10.1109/83.941859 
						
					 | 
			
| [17] | 
					 H. S. A. Barmak and J. Flusser, " Fast computation of krawtchouk moments,” Information Sciences, vol. 288, no. C, pp. 73–86, 2014. 
						
					 | 
			
| [18] | 
					 B. Xiao, Y. Zhang, L. Li, W. Li, and G. Wang, " Explicit krawtchouk moment invariants for invariant image recognition,” J. Electronic Imaging, vol. 25, no. 2, pp. 023002, 2016. doi:  10.1117/1.JEI.25.2.023002 
						
					 | 
			
| [19] | 
					 W. Chen, Z. Cai, and D. Qi, " Orthogonal franklin moments and its application for image representation,” Chinese J. Computers, vol. 37, no. 121, pp. 1–8, 2014. 
						
					 | 
			
| [20] | 
					 P. Franklin, " A set of continuous orthogonal functions,” Mathematische Annalen, vol. 100, no. 1, pp. 522–529, 1928. doi:  10.1007/BF01448860 
						
					 | 
			
| [21] | 
					 Z. C. Cai, W. Chen, D. X. Qi, and Z. S. Tang, " A class of general Franklin functions and its application,” Chinese J. Computers, vol. 32, no.10, pp. 2004-2013, 2009. 
						
					 | 
			
| [22] | 
					 Y. Meyer and R. D. Ryan, Wavelets: Algorithms and Applications. SIAM, l993. 
						
					 | 
			
| [23] | 
					 L. Guo, M. Dai, and M. Zhu, " Quaternion moment and its invariants for color object classification,” Information Sciences, vol. 273, no. 273, pp. 132–143, 2014. 
						
					 | 
			
| [24] | 
					 E. G. Karakasis, G. A. Papakostas, D. E. Koulouriotis, and V. D. Tourassis, " Generalized dual hahn moment invariants,” Pattern Recognition, vol. 46, no. 7, pp. 1998–2014, 2013. doi:  10.1016/j.patcog.2013.01.008 
						
					 | 
			
| [25] | 
					 H. Zhu, H. Shu, J. Liang, L. Luo, and J. L. Coatrieux, Image analysis by discrete orthogonal racah moments, in Proc. Int. Conf. Image Analysis and Recognition, 2005, pp. 524–531. 
						
					 | 
			
| [26] | 
					 B. Xiao, G. Y. Wang, and W. S. Li, " Radial shifted legendre moments for image analysis and invariant image recognition,” Image and Vision Computing, vol. 32, no. 12, pp. 994–1006, 2014. doi:  10.1016/j.imavis.2014.09.002 
						
					 | 
			
| [27] | 
					 Y. Chen and X. H. Xu, " Supervised orthogonal discriminant subspace projects learning for face recognition,” Neural Networks, vol. 50, no. 2, pp. 33, 2014. 
						
					 | 
			
| [28] | 
					 B. Xiao, J. F. Ma, and X. Wang, " Image analysis by bessel-fourier moments,” Pattern Recognition, vol. 43, no. 8, pp. 2620–2629, 2010. doi:  10.1016/j.patcog.2010.03.013 
						
					 |