IEEE/CAA Journal of Automatica Sinica
Citation: | Xiangze Lin, Shuaiting Huang, Wanli Zhang and Shihua Li, "Finite-time Feedback Stabilization of a Class of Input-delay Systems With Saturating Actuators via Digital Control," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1281-1290, Sept. 2019. doi: 10.1109/JAS.2019.1911525 |
[1] |
S. Xu and L. James, " A survey of linear matrix inequality techniques in stability analysis of delay systems,” Int. J. Syst. Sci., vol. 39, no. 12, pp. 1095–1113, 2008. doi: 10.1080/00207720802300370
|
[2] |
B. Chen, S. Wang, and H. Lu, " Stabilization of time-delay systems containing saturating actuators,” Int. J. Control., vol. 47, no. 3, pp. 867–881, 1988. doi: 10.1080/00207178808906058
|
[3] |
X. Wang and A. Saberi, " Stabilization of linear system with input saturation and unknown constant delays,” Autom., vol. 49, pp. 3632–3640, 2013. doi: 10.1016/j.automatica.2013.09.007
|
[4] |
G. Song, T. Li, and K. Hu, " Observer-based quantized control of nonlinear systems with input saturation,” Non. Dyn., vol. 86, no. 2, pp. 1157–1169, 2016. doi: 10.1007/s11071-016-2954-3
|
[5] |
X. Z. Lin, X. L. Li, and S. H. Li, " Finite-time stabilization of switched linear systems with nonlinear saturating actuators,” J. Franklin Inst., vol. 351, no. 3, pp. 1464–1482, 2014. doi: 10.1016/j.jfranklin.2013.11.013
|
[6] |
Z. Lin and H. Fang, " On asymptotic stabilizability of linear systems with delayed input,” IEEE Trans. Autom. Control., vol. 52, no. 6, pp. 998–1013, 2007.
|
[7] |
S. Tarbouriech and J. Silva, " Synthesis of controllers for continuous time delay systems with saturating controls via LMIs,” IEEE Trans. Autom. Control., vol. 45, no. 1, pp. 105–111, 2000. doi: 10.1109/9.827364
|
[8] |
J. Shen and F. Kung, " Stabilization of input-delay systems with saturating actuator,” Int. J. Control., vol. 50, no. 5, pp. 1667–1680, 1989. doi: 10.1080/00207178908953458
|
[9] |
B. Du, J. Lam, and S. Zhan, " Stabilization for state/input delay systems via static and integral output feedback,” Autom., vol. 46, no. 12, pp. 2000–2007, 2010. doi: 10.1016/j.automatica.2010.08.005
|
[10] |
U. Hakki and A. Iftar, " Stable controller design for systems with multiple input/output time-delays,” Autom., vol. 48, no. 3, pp. 563–568, 2012. doi: 10.1016/j.automatica.2012.01.001
|
[11] |
J. Cheng, S. Chen, and Z. Liu, " Robust finite-time sampled-data control of linear systems subject to random occurring delays and its application to Four-Tank system,” Appl. Math. Comput., vol. 281, pp. 55–76, 2016.
|
[12] |
X. D. Zhao, H. J. Yang, and W. G. Xia, " Adaptive fuzzy hierarchical sliding mode control for a class of MIMO nonlinear time-delay systems with input saturation,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1062–1077, 2016.
|
[13] |
D. Rew, M. Tahk, and H. Cho, " Short-time stability of proportional navigation guidance loop,” IEEE Trans. Aerosp and Electron. Syst., vol. 32, no. 3, pp. 1107–1115, 1996.
|
[14] |
F. Amato, M. Ariola, and P. Dorato, " Finite-time stabilization via dynamic output feedback,” Autom., vol. 42, pp. 337–342, 2006. doi: 10.1016/j.automatica.2005.09.007
|
[15] |
P. Dorato. " Short time stability in linear time-varying systems,” in Proc. the IRE Int. Convention Record Part 4, pp. 83–87, 1961.
|
[16] |
L. Weiss and F. Infante, " Finite time stability under perturbing forces and on product spaces,” IEEE Trans. Autom. Control., vol. 12, pp. 44–59, 1967.
|
[17] |
H. D. D’Angelo, Linear Time-varying Systems: Analysis and Synthesis. Boston: Allyn and Bacon, MA, 1970.
|
[18] |
X. Z. Lin, X. L. Li, and S. H. Li, " Finite-time boundedness for switched systems with sector bounded nonlinearity and constant time delay,” Appl. Math. Comput., vol. 274, pp. 25–40, 2016.
|
[19] |
X. Z. Lin, S. H. Li, and Y. Zou, " Finite-time stabilization of switched linear time delay systems with saturating actuators,” Appl. Math. Comput., vol. 299, pp. 66–79, 2017.
|
[20] |
L. V. Hien and D. T. Son, " Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays,” Appl. Math. Comput., vol. 251, no. 15, pp. 14–23, 2015.
|
[21] |
X. J. Chen and J. Zhang, " Tiedong ma parameter estimation and topology identification of uncertain general fractional-order complex dynamical networks with time delay,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 295–303, 2016. doi: 10.1109/JAS.2016.7508805
|
[22] |
Z. Y. Nie, Q. G. Wang, R. J. Liu, and Y. H. Lan, " Identification and PID control for a class of delay Fractional-order systems,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 463–476, 2016. doi: 10.1109/JAS.2016.7510103
|
[23] |
D. Shi and T. Chen, " On finite-horizon
|
[24] |
F. Aamto and M. Ariola, " Finite-time control of discrete-time linear system,” IEEE Trans. Autom. Control, vol. 50, pp. 724–729, 2005. doi: 10.1109/TAC.2005.847042
|
[25] |
W. Kang, S. Zhong, and K. Shi, " Finite-time stability for discrete-time system with time-varying delay and nonlinear perturbations,” ISA Trans., vol. 60, pp. 67–73, 2016. doi: 10.1016/j.isatra.2015.11.006
|
[26] |
M. Chen, X. Yang, and H. Shen, " Finite-time asynchronous h control for Markov jump repeated scalar non-linear systems with input constraints,” Appl. Math. Comput., vol. 275, no. 15, pp. 172–180, 2016.
|
[27] |
G. Wang, Z. Li, and Q. Zhang, " Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay,” Appl. Math. Comput., vol. 293, no. 15, pp. 377–393, 2017.
|
[28] |
S. Mobayen, " Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: an LMI approach,” Complexity, vol. 21, no. 5, pp. 14–19, 2014.
|
[29] |
W. J. Gu, Y. G. Yu, and W. Hu, " Artificial bee colony algorithm-based parameter estimation of fractional-order chaotic system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 107–113, 2017. doi: 10.1109/JAS.2017.7510340
|
[30] |
X. Z. Lin, C. Chen, and C. J. Qian, " Smooth output feedback stabilization of a class of planar switched nonlinear systems under arbitrary switchings,” Autom., vol. 82, pp. 314–318, 2017. doi: 10.1016/j.automatica.2017.03.020
|
[31] |
X. Z. Lin, H. B. Du, S. H. Li, and Y. Zou, " Finite-time stability and finitetime weighted L2-gain analysis for switched systems with time-varying delay,” IET Control Theory Applic., vol. 7, no. 7, pp. 1058–1069, 2013. doi: 10.1049/iet-cta.2012.0551
|
[32] |
X. Z. Lin, X. L. Li, L. Chen, and S. H. Li, " Smooth output feedback stabilization for a class of high-order switched nonlinear systems,” Non. Analy.:Hybrid Sys., vol. 29, pp. 34–53, 2018. doi: 10.1016/j.nahs.2017.12.003
|
[33] |
X. Y. Yu, X. J. F. Hong, J. Qi, L. L. Ou, and Y. L. He, " Research on the Loworder control strategy of the power system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 501–508, 2018. doi: 10.1109/JAS.2017.7510835
|
[34] |
Y. H. Sun, Y. X. Wang, Z. N. Wei, G. J. Sun, and X. P. Wu, " Robust H∞ load frequency control of multi-area power system with time delay: a sliding mode control approach,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 610–617, 2018. doi: 10.1109/JAS.2017.7510649
|
[35] |
H. L. Ren, G. D. Zong, and L. L. Hou, " Finite-time resilient decentralized control for interconnected impulsive switched systems with neutral delay,” ISA Trans., vol. 67, pp. 19–29, 2017. doi: 10.1016/j.isatra.2017.01.013
|
[36] |
F. Amato, F. D. Tommasi, and A. Pironti, " Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,” Autom., vol. 49, no. 8, pp. 2546–2550, 2013. doi: 10.1016/j.automatica.2013.04.004
|
[37] |
J. F. Wang and C. F. Liu, " Stabilization of uncertain systems with Markovian modes of time delay and quantization density,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 463–470, 2018. doi: 10.1109/JAS.2017.7510823
|
[38] |
L. Rosier, " Homogeneous Lyapunov function for homogeneous continuous vector field,” Sys. Contr. Lett., vol. 19, no. 4, pp. 467–473, 1992.
|
[39] |
S. P. Bhat and D. S. Bernstein, " Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358
|
[40] |
Y. Orlov, " Finite time stability and robust control synthesis of uncertain switched systems,” SIAM J. Control and Optim, vol. 43, no. 4, pp. 1253–1271, 2005.
|
[41] |
X. Z. Lin, S. T. Huang, S. H. Li, and Y. Zou. " Finite-time feedback control of an input-delay system with nonlinear saturating actuators”. Trans. Inst. Meas. Control, vol. 40, no. 10, doi: 014233121771383, Jul. 2017.
|
[42] |
K. J. Astrom and B. Wittenmark. Computer-Controlled Systems: Theory and Design. Englewood Cliffs, NJ: Prentice-Hall, 1984.
|
[43] |
T. Chen and B. A. Francis, " Input output stability of sampled-data systems,” IEEE Trans. Autom. Control, vol. 36, pp. 50–58, 1991. doi: 10.1109/9.62267
|
[44] |
T. Chen and B. A. Francis. Optimal Sampled-data Control Systems. Springer London, 1995.
|
[45] |
S. Hara, Y. Yamamoto, and H. Fujioka. " Modern and classical analysis/ synthesis methods in sampled-data control.” in Proc. the 35th Conf. Decision and Control, pp. 1251–1255, 1996.
|
[46] |
L. Hu, J. Lam, Y. Cao, and H. Shao, " A linear matrix inequality approach to robust H2 sampled-data control for linear uncertain systems,” IEEE Trans. Sys.,Man. Cyber., vol. 33, pp. 149–155, 2003.
|
[47] |
X. Z. Lin, S. T. Huang, and S. H. Li. " Finite-time feedback stabilization of an input-delay system via linear sampled-data control.” in Proc. of the 37th Chinese Control Conf., pp. 3059–3067, 2018.
|
[48] |
B. Chen, S. Wang, and H. Lu, " Stabilization of time-delay systems containing saturating actuator,” Int. J. Control, vol. 47, no. 3, pp. 867–881, 1998.
|
[49] |
F. Amato, M. Ariola, and P. Dorato, " Finite-time control of linear systems subject to parametric uncertainties and disturbances,” Autom., vol. 37, pp. 1459–1463, 2001. doi: 10.1016/S0005-1098(01)00087-5
|
[50] |
F. Amato, M. Carbone, M. Ariola, and C. Cosentino. " Finite-time stability of discrete-time systems.” in Proc. of American Control Conf., pp. 1440–1444, 2004.
|
[51] |
C. Desoer and M. Vidyasagar. Feedback Systems: Input-Output Properties. New York: Academic Press, 1975.
|