A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 1
Jan.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Ebenezer R. H. P. Isaac, Susan Elias, Srinivasan Rajagopalan and K.S. Easwarakumar, "Template-Based Gait Authentication Through Bayesian Thresholding," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 209-219, Jan. 2019. doi: 10.1109/JAS.2019.1911345
Citation: Ebenezer R. H. P. Isaac, Susan Elias, Srinivasan Rajagopalan and K.S. Easwarakumar, "Template-Based Gait Authentication Through Bayesian Thresholding," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 209-219, Jan. 2019. doi: 10.1109/JAS.2019.1911345

Template-Based Gait Authentication Through Bayesian Thresholding

doi: 10.1109/JAS.2019.1911345
More Information
  • While gait recognition is the mapping of a gait sequence to an identity known to the system, gait authentication refers to the problem of identifying whether a given gait sequence belongs to the claimed identity. A typical gait authentication system starts with a feature representation such as a gait template, then proceeds to extract its features, and a transformation is ultimately applied to obtain a discriminant feature set. Almost every authentication approach in literature favours the use of Euclidean distance as a threshold to mark the boundary between a legitimate subject and an impostor. This article proposes a method that uses the posterior probability of a Bayes' classifier in place of the Euclidean distance. The proposed framework is applied to template-based gait feature representations and is evaluated using the standard CASIA-B gait database. Our study experimentally demonstrates that the Bayesian posterior probability performs significantly better than the de facto Euclidean distance approach and the cosine distance which is established in research to be the current state of the art.


  • loading
  • [1]
    Y. Dupuis, X. Savatier, and P. Vasseur, "Feature subset selection applied to model-free gait recognition, " Image Vision Comput., vol. 31, no. 8, pp. 580-591, Aug. 2013. http://dl.acm.org/citation.cfm?id=2494730
    P. Arora, M. Hanmandlu, and S. Srivastava, "Gait based authentication using gait information image features, " Pattern Recognit. Lett., vol. 68, pp. 336-342, Dec. 2015. http://www.sciencedirect.com/science/article/pii/S0167865515001658
    N. V. Boulgouris, K. N. Plataniotis, and D. Hatzinakos, "Gait raecognition using linear time normalization, " Pattern Recognit., vol. 39, no. 5, pp. 969-979, May 2006. http://ci.nii.ac.jp/naid/80019272740
    L. Friedman, M. S. Nixon, and O. V. Komogortsev, "Method to assess the temporal persistence of potential biometric features: Application to oculomotor, gait, face and brain structure databases, " PLoS One, vol. 12, no. 6, pp. e0178501, Jun. 2017. http://www.ncbi.nlm.nih.gov/pubmed/28575030
    J. Han and B. Bhanu, "Individual recognition using gait energy image, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 316-322, Feb. 2006. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16468626
    K. Bashir, T. Xiang, and S. G. Gong, "Gait recognition without subject cooperation, " Pattern Recognit. Lett., vol. 31, no. 13, pp. 2052-2060, Oct. 2010. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Pattern%20Recognition%20Letters&volume=31&issue=13&spage=2052
    E. H. Zhang, Y. W. Zhao, and W. Xiong, "Active energy image plus 2DLPP for gait recognition, " Signal Process., vol. 90, no. 7, pp. 2295-2302, Jul. 2010. http://www.sciencedirect.com/science/article/pii/S0165168410000411
    H. Lee, J. Baek, and E. Kim, "A probabilistic image-weighting scheme for robust silhouette-based gait recognition, " Multimed. Tools Appl., vol. 70, no. 3, pp. 1399-1419, Jun. 2014. doi: 10.1007/s11042-012-1163-4
    A. Nandy, A. Pathak, and P. Chakraborty, "A study on gait entropy image analysis for clothing invariant human identification, " Multimed. Tools Appl., vol. 76, no. 7, pp. 9133-9167, Apr. 2017. doi: 10.1007/s11042-016-3505-0
    A. Ghebleh and M. E. Moghaddam, "Clothing-invariant human gait recognition using an adaptive outlier detection method, " Multimed. Tools Appl., vol. 77, no. 7, pp. 8237-8257, Apr. 2018. doi: 10.1007/s11042-017-4712-z
    I. Rida, X. D. Jiang, and G. L. Marcialis, "Human body part selection by group lasso of motion for model-free gait recognition, " IEEE Signal Process. Lett., vol. 23, no. 1, pp. 154-158, Jan. 2016. http://ieeexplore.ieee.org/document/7350221/
    E. R. H. P. Isaac, S. Elias, S. Rajagopalan, and K. S. Easwarakumar, "View-invariant gait recognition through genetic template segmentation, " IEEE Signal Process. Lett., vol. 24, no. 8, pp. 1188-1192, Aug. 2017. http://ieeexplore.ieee.org/document/7948755/
    D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA, USA:Addison-Wesley Longman Publishing Co., Inc., 1989.
    S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer, "The HumanID gait challenge problem: data sets, performance, and analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 2, pp. 162-177, Feb. 2005. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15688555
    D. S. Matovski, M. S. Nixon, S. Mahmoodi, and J. N. Carter, "The effect of time on gait recognition performance, " IEEE Trans. Inf. Fore. Secur., vol. 7, no. 2, pp. 543-552, Apr. 2012. http://ieeexplore.ieee.org/document/6081931/
    H. Nakajima, I. Mitsugami, and Y. Yagi, "Depth-based gait feature representation, " Inf. Media Technol., vol. 8, no. 4, pp. 1085-1089, Jul. 2013.
    A. I. Bazin and M. S. Nixon, "Gait verification using probabilistic methods, " in Proc. 7th IEEE Workshops on Application of Computer Vision, Breckenridge, USA, 2005, pp. 60-65. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4129460
    S. Q. Yu, D. L. Tan, and T. N. Tan, "A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, " in Proc. 18th Int. Conf. Pattern Recognition, Hong Kong, China, 2006, pp. 441-444. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1699873
    D. K. Panda and S. Meher, "Detection of moving objects using fuzzy color difference histogram based background subtraction, " IEEE Signal Process. Lett., vol. 23, no. 1, pp. 45-49, Jan. 2016. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Signal%20Processing%20Letters&volume=23&issue=1&spage=45
    A. Rosebrock, Practical Python and OpenCV. Miami, USA:PyimageSearch, 2016.
    S. M. Jia, L. J. Wang, and X. Z. Li, "View-invariant gait authentication based on silhouette contours analysis and view estimation, " IEEE/CAA J. Autom. Sinica, vol. 2, no. 2, pp. 226-232, Apr. 2015. http://www.cnki.com.cn/Article/CJFDTotal-ZDHB201502012.htm
    P. S. Huang, C. J. Harris, and M. S. Nixon, "Recognising humans by gait via parametric canonical space, " Artif. Intell. Eng., vol. 13, no. 4, pp. 359-366, Oct. 1999. http://www.sciencedirect.com/science/article/pii/S0954181099000084
    X. D. Jiang, "Linear subspace learning-based dimensionality reduction, " IEEE Signal Process. Mag., vol. 28, no. 2, pp. 16-26, Mar. 2011. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5714391
    C. M. Bishop, "Probabilistic generative models, " in Pattern Recognition and Machine Learning, C. M. Bishop, Ed. New York, USA: Springer, 2006, pp. 179-220.
    O. C. Hamsici and A. M. Martinez, "Bayes optimality in linear discriminant analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4, pp. 647-657, Apr. 2008. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM18276970
    J. Franklin, "The elements of statistical learning: data mining, inference and prediction, " Math. Intell., vol. 27, no. 2, pp. 83-85, Mar. 2005. doi: 10.1007/BF02985802
    A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. RoyChowdhury, V. Kruger, and R. Chellappa, "Identification of humans using gait, " IEEE Trans. Image Process., vol. 13, no. 9, pp. 1163-1173, Sep. 2004. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15449579
    R. A. Johnson, Miller & Freunds Probability and Statistics for Engineers. 8th ed. New Delhi, India:Prentice Hall International, 2011.
    D. Muramatsu, Y. Makihara, and Y. Yagi, "View transformation model incorporating quality measures for cross-view gait recognition, " IEEE Trans. Cybern., vol. 46, no. 7, pp. 1602-1615, Jul. 2016. http://www.ncbi.nlm.nih.gov/pubmed/26259209
    N. N. Liu, J. W. Lu, and Y. P. Tan, "Joint subspace learning for viewinvariant gait recognition, " IEEE Signal Process. Lett., vol. 18, no. 7, pp. 431-434, Jul. 2011. http://ieeexplore.ieee.org/document/5771540/


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1514) PDF downloads(25) Cited by()


    DownLoad:  Full-Size Img  PowerPoint