A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 3
May  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Nourallah Ghaeminezhad and Shuang Cong, "Preparation of Hadamard Gate for Open Quantum Systems by the Lyapunov Control Method," IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 733-740, Mar. 2018. doi: 10.1109/JAS.2018.7511084
Citation: Nourallah Ghaeminezhad and Shuang Cong, "Preparation of Hadamard Gate for Open Quantum Systems by the Lyapunov Control Method," IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 733-740, Mar. 2018. doi: 10.1109/JAS.2018.7511084

Preparation of Hadamard Gate for Open Quantum Systems by the Lyapunov Control Method

doi: 10.1109/JAS.2018.7511084

National Natural Science Foundation of China 61573330

Chinese Academy of Sciences CAS

the World Academy of Sciences TWAS

More Information
  • In this paper, the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate, which is an important basic gate for the quantum computers. First, the density matrix interested in quantum system is transferred to vector formation. Then, in order to obtain a controller with higher accuracy and faster convergence rate, a Lyapunov function based on the matrix logarithm function is designed. After that, a procedure for the controller design is derived based on the Lyapunov stability theorem. Finally, the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate. The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.


  • loading
  • [1]
    G. P. Berman, G. D. Doolen, R. Mainieri, and V. I. Tsifrinovich, Introduction to Quantum Computers. River Edge, NJ, USA: World Scientific, 1998, pp. 1-3.
    D. Dong and I. R. Petersen, "Quantum control theory and applications: a survey, " IET Control Theory Appl. , vol. 4, no. 12, pp. 2651-2671, Dec. 2010. http://www.oalib.com/paper/4079366
    V. Privman, D. Mozyrsky, and I. D. Vagner, "Quantum computing with spin qubits in semiconductor structures, " Comput. Phys. Commun. , vol. 146, no. 3, pp. 331-338, Jul. 2002. http://www.sciencedirect.com/science/article/pii/S0010465502004241
    B. L. Hazelzet, M. R. Wegewijs, T. H. Stoof, and Y. V. Nazarov, "Coherent and incoherent pumping of electrons in double quantum dots, " J. Phys. Rev. B, vol. 63, no. 16, Article ID: 165313, Apr. 2001. doi: 10.1103/PhysRevB.63.165313
    V. M. Akulin, Dynamics of Complex Quantum Systems. Dordrecht, Netherlands: Springer, 2014, pp. 13-22.
    S. M. Nejad and M. Mehmandoost, "Realization of quantum Hadamard gate by applying optimal control fields to a spin qubit, " in Proc. 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), Kyoto, Japan, 2010, pp. V2-292-V2-296. http://www.mendeley.com/research/realization-quantum-hadamard-gate-applying-optimal-control-fields-spin-qubit/
    E. Kyoseva and N. Vitanov, "Optimal quantum control by composite pulses, " in Proc. 2014 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2014, pp. 1-2.
    F. Albertini and D. Dálessandro, "Time-optimal control of a two level quantum system via interaction with an auxiliary system, " IEEE Trans. Automat. Control, vol. 59, no. 11, pp. 3026-3032, Nov. 2014.
    A. Gamouras, R. Mathew, S. Freisem, D. G. Deppe, and K. C. Hall, "Optimal two-qubit quantum control in InAs quantum dots, " in Proc. 2013 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2013, pp. 1-2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_QELS-2013-QM4B.8
    T. Y. Chiu and K. T. Lin, "Optimal control of two-qubit quantum gates in a non-Markovian open system, " in Proc. 12th IEEE International Conference on Control and Automation (ICCA), Kathmandu, Nepal, 2016, pp. 791-796.
    D. Dálessandro and M. Dahleh, "Optimal control of two-level quantum systems, " IEEE Trans. Automat. Control, vol. 46, no. 6, pp. 866-876, Jun. 2001. doi: 10.1109/9.928587
    C. Piltz, B. Scharfenberger, A. Khromova, A. F. Varón, and C. Wunderlich, "Protecting conditional quantum gates by robust dynamical decoupling, " Phys. Rev. Lett. , vol. 110, no. 20, Article ID: 200501, May 2013. http://www.ncbi.nlm.nih.gov/pubmed/25167390
    M. D. Grace, J. Dominy, W. M. Witzel, and M. S. Carroll, "Combining dynamical-decoupling pulses with optimal control theory for improved quantum gates, " arXiv preprint, arXiv: 1105. 2358, 2012. http://arxiv.org/abs/1105.2358v1
    S. C. Hou, L. C. Wang, and X. X. Yi, "Realization of quantum gates by Lyapunov control, " Phys. Lett. A, vol. 378, no. 9, pp. 669-704, Feb. 2014. http://www.sciencedirect.com/science/article/pii/S037596011400036X
    S. C. Hou, M. A. Khan, X. X. Yi, D. Y. Dong, and I. R. Petersen, "Optimal Lyapunov-based quantum control for quantum systems, " Phys. Rev. A, vol. 86, no. 2, Article ID: 022321, Aug. 2012. http://arxiv.org/abs/1203.5373
    J. Wen, S. Cong, and X. B. Zou, "Realization of quantum hadamard gate based on Lyapunov method, " in Proc. 10th World Congress on Intelligent Control and Automation (WCICA), Beijing, China, 2012, pp. 5096-5101.
    S. Cong, Control of Quantum Systems: Theory and Methods. Singapore: John Wiley and Sons, 2014, pp. 88-91.
    J. Wen and S. Cong, "Preparation of quantum gates for open quantum systems by Lyapunov control method, " Open Syst. Inf. Dyn. , vol. 23, no. 1, Article ID: 1650005, Mar. 2016. doi: 10.1142/S1230161216500050
    J. G. Broida, "Essential linear algebra, " University of Colorado, Colorado, USA, 2009, pp. 79-81.
    R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications. Berlin Heidelberg, Germany: Springer, 2007, pp. 5-17.
    G. Lindblad, "On the generators of quantum dynamical semigroups, " Commun. Math. Phys. , vol. 48, no. 2, pp. 119-130, Jun. 1976. doi: 10.1007/BF01608499
    M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. New York, USA: Cambridge University Press, 2010, pp. 380-387.
    H. D. Yuan, "Reachable set of open quantum dynamics for a single spin in Markovian environment, " Automatica, vol. 49, no. 4, pp. 955-959, Apr. 2013. http://dl.acm.org/citation.cfm?id=2450584.2450981
    E. Bruning, H. Mäkelä, A. Messina, and F. Petruccione, "Parametrizations of density matrices, " J. Mod. Opt. , vol. 59, no. 1, pp. 1-20, Jan. 2012. http://arxiv.org/abs/1103.4542
    P. de Fouquieres, "Implementing quantum gates by optimal control with doubly exponential convergence, " Phys. Rev. Lett. , vol. 108, no. 11, Article ID: 110504, Mar. 2012.
    N. J. Higham, Functions of Matrices: Theory and Computation. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2008, pp. 269-287.
    J. Ghosh, "A note on the measures of process fidelity for non-unitary quantum operations, " arXiv preprint, arXiv: 1111. 2478, 2011. http://arxiv.org/abs/1111.2478
    K. Blum, Density Matrix Theory and Applications. New York, USA: Springer, 2012, pp. 12-14.
    D. V. Treshchev, "Loss of stability in Hamiltonian systems that depend on parameters, " J. Appl. Mathem. Mech. , vol. 56, no. 4, pp. 492-500, Jan. 1992. http://www.sciencedirect.com/science/article/pii/002189289290004R
    M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut, and D. A. Lidar, "Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles, " J. Phys. B: Atom. Mol. Opt. Phys. , vol. 40, no. 9, pp. S103-S125, Apr. 2007. http://arxiv.org/abs/quant-ph/0702147


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (1110) PDF downloads(122) Cited by()


    DownLoad:  Full-Size Img  PowerPoint