A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Ningbo Yu, Wulin Zou, Wen Tan and Zhuo Yang, "Augmented Virtual Stiffness Rendering of a Cable-driven SEA for Human-Robot Interaction," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 714-723, Oct. 2017. doi: 10.1109/JAS.2017.7510637
Citation: Ningbo Yu, Wulin Zou, Wen Tan and Zhuo Yang, "Augmented Virtual Stiffness Rendering of a Cable-driven SEA for Human-Robot Interaction," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 714-723, Oct. 2017. doi: 10.1109/JAS.2017.7510637

Augmented Virtual Stiffness Rendering of a Cable-driven SEA for Human-Robot Interaction

doi: 10.1109/JAS.2017.7510637
Funds:

the National Natural Science Foundation of China 61403215

he National Natural Science Foundation of Tianjin 13JCYBJC36600

More Information
  • Human-robot interaction (HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator (SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF (degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection, and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller, the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.

     

  • loading
  • [1]
    P. Tsarouchi, S. Makris, and G. Chryssolouris, "Human-robot interaction review and challenges on task planning and programming, " Int. J. Comp. Integr. Manufact. , vol. 29, no. 8, pp. 916-931, Feb. 2016.
    [2]
    S. K. Charles, H. I. Krebs, B. T. Volpe, D. Lynch, and N. Hogan, "Wrist rehabilitation following stroke: Initial clinical results, " in Proc. 9th IEEE International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005, pp. 13-16. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1501040
    [3]
    T. Nef, M. Guidali, and R. Riener, "ARMin Ⅲ-arm therapy exoskeleton with an ergonomic shoulder actuation, " Appl. Bion. Biomech. , vol. 6, no. 2, pp. 127-142, Apr. 2009. http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ0211357561.aspx
    [4]
    A. Gupta, M. K. O'Malley, V. Patoglu, and C. Burgar, "Design, control and performance of ricewrist: A force feedback wrist exoskeleton for rehabilitation and training, " Int. J. Robot. Res. , vol. 27, no. 2, pp. 233-251, Feb. 2008. http://dl.acm.org/citation.cfm?id=1340271.1340279
    [5]
    G. A. Pratt and M. M. Williamson, "Series elastic actuators, " in Proc. 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, vol. 1, pp. 399-406, Aug. 1995.
    [6]
    J. W. Sensinger and R. F. Weir, "Design and analysis of a non-backdrivable series elastic actuator, " in Proc. 9th IEEE International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005, pp. 390-393. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1501126
    [7]
    F. Sergi, D. Accoto, G. Carpino, N. L. Tagliamonte, and E. Guglielmelli, "Design and characterization of a compact rotary series elastic actuator for knee assistance during overground walking, " in Proc. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 2012, pp. 1931-1936.
    [8]
    J. S. Sulzer, M. A. Peshkin, and J. L. Patton, "MARIONET: An exotendon-driven rotary series elastic actuator for exerting joint torque, " in Proc. 9th IEEE International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005, pp. 103-108. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1501062
    [9]
    D. Surdilovic and R. Bernhardt, "STRING-MAN: A new wire robot for gait rehabilitation, " in Proc. 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, vol. 2, pp. 2031-2036, May 2004. http://citeseerx.ist.psu.edu/viewdoc/summary?cid=9013773
    [10]
    J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. C. T. van der Helm, and H. van der Kooij, "A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots, " Int. J. Robot. Res. , vol. 25, no. 3, pp. 261-281, Mar. 2006. http://dl.acm.org/citation.cfm?id=1117442
    [11]
    J. Oblak, I. Cikajlo, and Z. MatjaciĆ, "Universal haptic drive: A robot for arm and wrist rehabilitation, " IEEE Trans. Neural Syst. Rehab. Eng. , vol. 18, no. 3, pp. 293-302, Jun. 2010.
    [12]
    D. Chapuis, R. Gassert, G. Ganesh, E. Burdet, and H. Bleuler, "Investigation of a cable transmission for the actuation of MR compatible haptic interfaces, " in Proc. 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006, pp. 426-431. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1501846
    [13]
    R. J. Caverly, J. R. Forbes, and D. Mohammadshahi, "Dynamic modeling and passivity-based control of a single degree of freedom cable-actuated system, " IEEE Trans. Control Syst. Technol. , vol. 23, no. 3, pp. 898-909, May 2015. http://ieeexplore.ieee.org/document/6891234/
    [14]
    N. Hogan, "Impedance control: An approach to manipulation: Part Ⅰ-theory, " J. Dyn. Syst. Measur. Control, vol. 107, no. 1, pp. 1-7, Mar. 1985.
    [15]
    G. A. Pratt, P. Willisson, C. Bolton, and A. Hofman, "Late motor processing in low-impedance robots: Impedance control of series-elastic actuators, " in Proc. 2004 American Control Conference, Boston, MA, USA, vol. 4, pp. 3245-3251, Jul. 2004.
    [16]
    H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, and H. van der Kooij, "Compliant actuation of rehabilitation robots, " Robot. Autom. Magaz. , vol. 15, no. 3, pp. 60-69, Sep. 2008.
    [17]
    F. Sergi and M. K. O'Malley, "On the stability and accuracy of high stiffness rendering in non-backdrivable actuators through series elasticity, " Mechatronics, vol. 26, pp. 64-75, Mar. 2015. http://www.sciencedirect.com/science/article/pii/S0957415815000161
    [18]
    L. Peng, Z. G. Hou, and W. Q. Wang, "Synchronous active interaction control and its implementation for a rehabilitation robot, " Acta Autom. Sin. , vol. 41, no. 11, pp. 1837-1846, Nov. 2015.
    [19]
    J. Hu, Z. G. Hou, Y. X. Chen, F. Zhang, and W. Q. Wang, "Lower limb rehabilitation robots and interactive control methods, " Acta Autom. Sin. , vol. 40, no. 11, pp. 2377-2390, Nov. 2014. http://en.cnki.com.cn/Article_en/CJFDTotal-MOTO201411001.htm
    [20]
    H. Y. Yu, S. N. Huang, G. Chen, Y. P. Pan, and Z. Guo, "Human-robot interaction control of rehabilitation robots with series elastic actuators, " IEEE Trans. Robot. , vol. 31, no. 5, pp. 1089-1100, Oct. 2015. http://ieeexplore.ieee.org/document/7177120/
    [21]
    H. Sadeghian, M. Keshmiri, L. Villani, and B. Siciliano, "Null-space impedance control with disturbance observer, " in Proc. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, pp. 2795-2800. doi: 10.1109/IROS.2012.6385690
    [22]
    J. S. Mehling, J. Holley, and M. K. O'Malley, "Leveraging disturbance observer based torque control for improved impedance rendering with series elastic actuators, " in Proc. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 2015, pp. 1646-1651.
    [23]
    K. Kong, J. Bae, and M. Tomizuka, "Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications, " IEEE/ASME Trans. Mech. , vol. 14, no. 1, pp. 105-118, Feb. 2009. http://ieeexplore.ieee.org/document/4783213/
    [24]
    N. Paine, S. Oh, and L. Sentis, "Design and control considerations for high-performance series elastic actuators, " IEEE/ASME Trans. Mech. , vol. 19, no. 3, pp. 1080-1091, Jun. 2014. http://www.emeraldinsight.com/servlet/linkout?suffix=b16&dbid=16&doi=10.1108%2FIR-06-2014-0350&key=10.1109%2FTMECH.2013.2270435
    [25]
    G. Z. Xu, A. G. Song, and H. J. Li, "Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network, " J. Intell. Robot. Syst. , vol. 62, no. 3-4, pp. 501-525, Jun. 2011. http://dl.acm.org/citation.cfm?id=1997645
    [26]
    C. Wang, Y. N. Li, S. S. Ge, K. P. Tee, and T. H. Lee, "Continuous critic learning for robot control in physical human-robot interaction, " in Proc. 13th IEEE International Conference on Control, Automation and Systems, Gwangju, Korea, 2013, pp. 833-838. http://ieeexplore.ieee.org/document/6704029/
    [27]
    B. Alqaudi, H. Modares, Ⅰ. Ranatunga, S. M. Tousif, F. L. Lewis, and D. O. Popa, "Model reference adaptive impedance control for physical human-robot interaction, " Control Theory Technol. , vol. 14, no. 1, pp. 68-82, Feb. 2016. doi: 10.1007/s11768-016-5138-2
    [28]
    W. He, Y. H. Chen, and Z. Yin, "Adaptive neural network control of an uncertain robot with full-state constraints, " IEEE Trans. Cybernet. , vol. 46, no. 3, pp. 620-629, Mar. 2016.
    [29]
    W. He, Y. T. Dong, and C. Y. Sun, "Adaptive neural impedance control of a robotic manipulator with input saturation, " IEEE Trans. Syst. Man Cybernet. : Syst. , vol. 46, no. 3, pp. 334-344, Mar. 2016.
    [30]
    J. E. Colgate, "The control of dynamically interacting systems, " Ph. D. dissertation, Massachusetts Institute of Technology, Massachusetts, USA, 1988.
    [31]
    S. P. Buerger and N. Hogan, "Relaxing passivity for human-robot interaction, " in Proc. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 4570-4575. http://ieeexplore.ieee.org/document/4059137/
    [32]
    W. L. Zou, W. Tan, Z. Yang, and N. B. Yu, "Torque control of a cable-driven series elastic actuator using the 2-DOF method, " in Proc. 35th Chinese Control Conference, Chengdu, China, 2016, pp. 6239-6243.
    [33]
    W. L. Zou, Z. Yang, W. Tan, M. Wang, J. T. Liu, and N. N. Yu, "Impedance control of a cable-driven series elastic actuator with the 2-DOF control structure, " in Proc. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, 2016, pp. 3347-3352. http://ieeexplore.ieee.org/document/7759515/
    [34]
    L. Qiu and K. M. Zhou, Introduction to Feedback Control. New Jersey, USA:Pearson Prentice Hall, 2010.
    [35]
    D. Youla and J. J. Bongiorno Jr, "A feedback theory of two-degree-of-freedom optimal wiener-hopf design, " IEEE Trans. Autom. Control, vol. 30, no. 7, pp. 652-665, Jul. 1985. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1104023
    [36]
    P. F. Huang, "Theoretical and experimental studies on two-degree-of-freedom controllers, " M.S. thesis, Hong Kong University of Science and Technology, Hong Kong, China, 2015.
    [37]
    J. C. Perry, J. Rosen, and S. Burns, "Upper-limb powered exoskeleton design, " IEEE/ASME Trans. Mech. , vol. 12, no. 4, pp. 408-417, Aug. 2007. http://ieeexplore.ieee.org/document/4291584/
    [38]
    J. S. Mehling, "Impedance control approaches for series elastic actuators, " Ph.D. dissertation, Rice University, Rice, Texas, USA, 2015. http://www.mendeley.com/research/impedance-control-approazches-series-elastic-actuators/
    [39]
    N. B. Yu, W. Tan, and J. T. Liu, "Design and analysis of a wrist-hand manipulator for rehabilitation of upper limb dexterous function, " in Proc. 2014 IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia, 2014, pp. 797-801. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7090429

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (1544) PDF downloads(130) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return