A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 1
Jan.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
Dina Tavares, Ricardo Almeida and Delfim F. M. Torres, "Constrained Fractional Variational Problems of Variable Order," IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 80-88, Jan. 2017. doi: 10.1109/JAS.2017.7510331
Citation: Dina Tavares, Ricardo Almeida and Delfim F. M. Torres, "Constrained Fractional Variational Problems of Variable Order," IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 80-88, Jan. 2017. doi: 10.1109/JAS.2017.7510331

Constrained Fractional Variational Problems of Variable Order

doi: 10.1109/JAS.2017.7510331
Funds:  This work was supported by Portuguese Funds through the Center for Research and Development in Mathematics and Applications (CIDMA) and the Portuguese Foundation for Science and Technology (FCT) (UID/MAT/04106/2013). Tavares was also supported by FCT through the Ph.D. fellowship SFRH/BD/42557/2007
More Information
  • Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint. In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined Caputo derivative of variable fractional order and we present a new variational problem subject to a holonomic constraint. We establish necessary optimality conditions in order to determine the minimizers of the fractional problems. The terminal point in the cost integral, as well as the terminal state, are considered to be free, and we obtain corresponding natural boundary conditions.

     

  • loading
  • [1]
    A. Atangana and A. Kilicman, "On the generalized mass transport equation to the concept of variable fractional derivative," Math. Probl. Eng., vol. 2014, Art. ID 542809, 9 pages, Mar. 2014. https://www.hindawi.com/journals/mpe/2014/542809/
    [2]
    C. M. Soon, C. F. M. Coimbra, and M. H. Kobayashi, "The variable viscoelasticity oscillator, "Ann. Phys., vol. 14, no. 6, pp. 378-389, Apr. 2005.
    [3]
    S. G. Samko and B. Ross, "Integration and differentiation to a variable fractional order, "Integral Transform. Spec. Funct., vol. 1, no. 4, pp. 277-300, Dec. 1993.
    [4]
    H. Sheng, H. Sun, C. Coopmans, Y. Chen, and G. W. Bohannan, "Physical experimental study of variable-order fractional integrator and differentiator, "in Proc. 4th IFAC Workshop Fractional Differentiation and Its Applications, Badajoz, Spain, 2010. doi: 10.1140%2Fepjst%2Fe2011-01384-4
    [5]
    D. Valério, G. Vinagre, J. Domingues, and J. S. da Costa, "Variableorder fractional derivatives and their numerical approximations I-real orders, "in Symp. Fractional Signals and Systems Lisbon 09, Lisbon, Portugal, 2009. http://www.sciencedirect.com/science/article/pii/S0165168410001404
    [6]
    A. B. Malinowska and D. F. M. Torres, "Fractional calculus of variations for a combined Caputo derivative, "Fract. Calc. Appl. Anal., vol. 14, no. 4, pp. 523-537, Dec. 2011.
    [7]
    A. B. Malinowska and D. F. M. Torres, "Multiobjective fractional variational calculus in terms of a combined Caputo derivative, "Appl. Math. Comput., vol. 218, no. 9, pp. 5099-5111, Jan. 2012. http://www.sciencedirect.com/science/article/pii/S009630031101321X
    [8]
    T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional variational calculus with classical and combined Caputo derivatives, "Nonlinear Anal., vol. 75, no. 3, pp. 1507-1515, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0362546X11000113
    [9]
    D. Tavares, R. Almeida, and D. F. M. Torres, "Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order, "Optimization, vol. 64, no. 6, pp. 1381-1391, Feb. 2015. doi: 10.1080/02331934.2015.1010088?src=recsys
    [10]
    T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional variational calculus of variable order, "in Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniversary Volume, Operator Theory:Advances and Applications, A. Almeida, L. Castro, and F. O. Speck, Eds. Basel:Birkhäuser Verlag, 2013, pp. 291-301. doi: 10.1007/978-3-0348-0516-2_16
    [11]
    T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Noether's theorem for fractional variational problems of variable order, "Cent. Eur. J. Phys., vol. 11, no. 6, pp. 691-701, Jun. 2013. http://adsabs.harvard.edu/abs/2013CEJPh..11..691O
    [12]
    J. Cresson, "Fractional embedding of differential operators and Lagrangian systems, "J. Math. Phys., vol. 48, no. 3, Art. ID 033504, 34 pages, Mar. 2007. https://www.researchgate.net/publication/2128358_Fractional_embedding_of_differential_operators_and_Lagrangian_systems
    [13]
    A. B. Malinowska and D. F. M. Torres, "Towards a combined fractional mechanics and quantization, "Fract. Calc. Appl. Anal., vol. 15, no. 3, pp. 407-417, Sep. 2012. doi: 10.2478/s13540-012-0029-9
    [14]
    R. Almeida, S. Pooseh, and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations, London:Imperial College Press, 2015.
    [15]
    D. Tavares, R. Almeida, and D. F. M. Torres, "Caputo derivatives of fractional variable order:numerical approximations, "Commun. Nonlinear Sci. Numer. Simul. vol. 35, pp. 69-87, Jun. 2016. http://www.sciencedirect.com/science/article/pii/S100757041500372X
    [16]
    A. B. Malinowska, T. Odzijewicz, and D. F. M. Torres, Advanced methods in the fractional calculus of variations. Cham:Springer, 2015.
    [17]
    A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations. London:Imperial College Press, 2012.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1508) PDF downloads(319) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return