A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 5
Aug.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
Amit S. Chopade, Swapnil W. Khubalkar, A.S. Junghare, M.V. Aware and Shantanu Das, "Design and Implementation of Digital Fractional Order PID Controller Using Optimal Pole-Zero Approximation Method for Magnetic Levitation System," IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 977-989, Sept. 2018. doi: 10.1109/JAS.2016.7510181
Citation: Amit S. Chopade, Swapnil W. Khubalkar, A.S. Junghare, M.V. Aware and Shantanu Das, "Design and Implementation of Digital Fractional Order PID Controller Using Optimal Pole-Zero Approximation Method for Magnetic Levitation System," IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 977-989, Sept. 2018. doi: 10.1109/JAS.2016.7510181

Design and Implementation of Digital Fractional Order PID Controller Using Optimal Pole-Zero Approximation Method for Magnetic Levitation System

doi: 10.1109/JAS.2016.7510181
Funds:

the Board of Research in Nuclear Sciences of the Department of Atomic Energy, India 2012/36/69-BRNS/2012

More Information
  • The aim of this paper is to employ fractional order proportional integral derivative (FO-PID) controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system (MLS), which is inherently nonlinear and unstable system. The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller. An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored. The controller parameters are tuned using dynamic particle swarm optimization (dPSO) technique. Effectiveness of the proposed control scheme is verified by simulation and experimental results. The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers. It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.

     

  • loading
  • [1]
    C. M. Lin, M. H. Lin, and C. W. Chen, "SoPC-based adaptive PID control system design for magnetic levitation system, " IEEE Syst. J. , vol. 5, no. 2, pp. 278-287, Jun. 2011. doi: 10.1109/JSYST.2011.2134530.
    [2]
    H. K. Chiang, C. A. Chen, and M. Y. Li, "Integral variable-structure grey control for magnetic levitation system, " IEE Proc. Electric Power Appl. , vol. 153, no. 6, pp. 809-814, Nov. 2006. doi: 10.1049/ip-epa:20060056.
    [3]
    Z. J. Yang, K. Kunitoshi, S. Kanae, and K. Wada, "Adaptive robust output-feedback control of a magnetic levitation system by K-filter approach, " IEEE Trans. Industr. Electron. , vol. 55, no. 1, pp. 390-399, Jan. 2008. doi: 10.1109/TIE.2007.896488.
    [4]
    R. Morales, V. Feliu, and H. Sira-Ramírez, "Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain, " IEEE Trans. Control Syst. Technol. , vol. 19, no. 4, pp. 757-771, Jul. 2011. doi: 10.1109/TCST.2010.2057511.
    [5]
    C. M. Lin, Y. L. Liu, and H. Y. Li, "SoPC-based function-link cerebellar model articulation control system design for magnetic ball levitation systems, " IEEE Trans. Industr. Electron. , vol. 61, no. 8, pp. 4265-4273, Aug. 2014. doi: 10.1109/TIE.2013.2288201.
    [6]
    A. El Hajjaji and M. Ouladsine, "Modeling and nonlinear control of magnetic levitation systems, " IEEE Trans. Industr. Electron. , vol. 48, no. 4, pp. 831-838, Aug. 2001. doi: 10.1109/41.937416.
    [7]
    C. A. Kluever, Dynamic Systems: Modeling, Simulation, and Control. Hoboken, NJ, USA: John Wiley and Sons, 2015.
    [8]
    G. F. Franklin, J. D. Powell, and A. Emami-Naeni, Feedback Control of Dynamic Systems, 3rd ed., Reading, MA, USA: Addison-Wesley, 1994.
    [9]
    T. H. Wong, "Design of a magnetic levitation control system: an undergraduate project, " IEEE Trans. Educ. , vol. E-29, no. 4, pp. 196-200, Nov. 1986. doi: 10.1109/TE.1986.5570565.
    [10]
    R. Sinha and M. L. Nagurka, "Analog and labview-based control of a maglev system with NI-ELVIS, " in Proc. ASME Int. Mechanical Engineering Congr. Expo. , Orlando, Florida, USA, 2005, pp. 741-746.
    [11]
    S. Saha, S. Das, R. Ghosh, B. Goswami, R. Balasubramanian, A. K. Chandra, and A. Gupta, "Design of a fractional order phase shaper for Iso-damped control of a PHWR under step-back condition, " IEEE Trans. Nucl. Sci. , vol. 57, no. 3, pp. 1602-1612, Jun. 2010. doi: 10.1109/TNS.2010.2047405.
    [12]
    S. Das, S. Das, and A. Gupta, "Fractional order modeling of a PHWR under step-back condition and control of its global power with a robust PIλDμ controller, " IEEE Trans. Nucl. Sci. , vol. 58, no. 5, pp. 2431-2441, Oct. 2011. doi: 10.1109/TNS.2011.2164422.
    [13]
    S. Saha, S. Das, R. Ghosh, B. Goswami, R. Balasubramanian, A. K. Chandra, S. Das, and A. Gupta, "Fractional order phase shaper design with Bodeś integral for iso-damped control system, " ISA Trans. , vol. 49, no. 2, pp. 196-206, Apr. 2010. doi: 10.1016/j.isatra.2009.12.001.
    [14]
    S. Das, "Fuel efficient nuclear reactor control, " in Proc. Int. Conf. Nuclear Engineering, Beijing, China, 2005.
    [15]
    K. J. Aström and T. Hägglund, PID Controllers: Theory, Design and Tuning, 2nd ed. Triangle Park, NC, USA: Instrument Society of America, 1995.
    [16]
    I. Podlubny, Fractional Differential Equations, New York, NY, USA: Academic Press, 1999.
    [17]
    S. Das, Functional Fractional Calculus for System Identification and Controls, Berlin, Heidelberg, Germany: Springer Science and Business Media, 2008. doi: 10.1007/978-3-540-72703-3.
    [18]
    I. Podlubny, "Fractional-order systems and PIλDμ controllers, " IEEE Trans. Automat. Control, vol. 44, no. 1, pp. 208-214, Jan. 1999. doi: 10.1109/9.739144.
    [19]
    A. Charef, H. H. Sun, Y. Y. Tsao, and B. Onaral, "Fractal system as represented by singularity function, " IEEE Trans. Automat. Control, vol. 37, no. 9, pp. 1465-1470, Sep. 1992. doi: 10.1109/9.159595.
    [20]
    A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, "Frequency-band complex noninteger differentiator: characterization and synthesis, " IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , vol. 47, no. 1, pp. 25-39, Jan. 2000. doi: 10.1109/81.817385.
    [21]
    Feedback Instruments Ltd., "Magnetic levitation control experiments, " East Susses, UK, Feedback Part No. 1160-33942S, 2006.
    [22]
    R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach, New York, NY, USA: Wiley-IEEE Press, 2012.
    [23]
    C. Yeroglu and N. Tan, "Note on fractional-order proportional-integraldifferential controller design, " IET Control Theory Appl. , vol. 5, no. 17, pp. 1978-1989, Nov. 2011. doi: 10.1049/iet-cta.2010.0746.
    [24]
    D. Valerio and J. S. da Costa, "Introduction to single-input, single-output fractional control, " IET Control Theory Appl. , vol. 5, no. 8, pp. 1033-1057, May 2011. doi: 10.1049/iet-cta.2010.0332.
    [25]
    D. L. Chen, Y. Q. Chen, and D. Y. Xue, "Digital fractional order Savitzky-Golay differentiator, " IEEE Trans. Circuits Syst. Ⅱ Express Briefs, vol. 58, no. 11, pp. 758-762, Nov. 2011. doi: 10.1109/TCSⅡ.2011.2168022.
    [26]
    M. Ö. Efe, "Fractional order systems in industrial automation: a survey, " IEEE Trans. Industr. Inf. , vol. 7, no. 4, pp. 582-591, Nov. 2011. doi: 10.1109/TⅡ.2011.2166775.
    [27]
    J. A. T. Machado, "Discrete-time fractional-order controllers, " Fract. Calc. Appl. Anal. , vol. 4, no. 1, pp. 47-66, Jan. 2001.
    [28]
    A. S. Dhabale, R. Dive, M. V. Aware, and S. Das, "A new method for getting rational approximation for fractional order differintegrals, " Asian J. Control, vol. 17, no. 6, pp. 2143-2152, Nov. 2015. doi: 10.1002/asjc.1148.
    [29]
    Y. Q. Chen and K. L. Moore, "Discretization schemes for fractionalorder differentiators and integrators, " IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , vol. 49, no. 3, pp. 363-367, Mar. 2002. doi: 10.1109/81.989172.
    [30]
    I. Pan and S. Das, "Gain and order scheduling for fractional order controllers, " in Intelligent Fractional Order Systems and Control, I. Pan and S. Das, Eds. Berlin, Heidelberg, Germany: Springer, 2013, pp. 147-157. doi: 10.1007/978-3-642-31549-76.
    [31]
    I. Petráš, "Fractional-order feedback control of a DC motor, " J. Electr. Eng. , vol. 60, no. 3, pp. 117-128, Mar. 2009.
    [32]
    S. Cuoghi and L. Ntogramatzidis, "Direct and exact methods for the synthesis of discrete-time proportional-integral-derivative controllers, " IET Control Theory Appl. , vol. 7, no. 18, pp. 2164-2171, Dec. 2013. doi: 10.1049/iet-cta.2013.0064.
    [33]
    Y. Q. Chen, I. Petras, and D. Y. Xue, "Fractional order control-a tutorial, " in Proc. American Control Conf. , St. Louis, MO, USA, 2009, pp. 1397-1411. doi: 10.1109/ACC.2009.5160719.
    [34]
    Y. Jin, Y. Q. Chen, and D. Xue, "Time-constant robust analysis of a fractional order[proportional derivative] controller, " IET Control Theory Appl. , vol. 5, no. 1, pp. 164-172, Jan. 2011. doi: 10.1049/iet-cta.2009.0543.
    [35]
    C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Q. Chen, "Tuning and autotuning of fractional order controllers for industry applications, " Control Eng. Pract. , vol. 16, no. 7, pp. 798-812, Jul. 2008. doi: 10.1016/j.conengprac.2007.08.006.
    [36]
    J. P. Zhong and L. C. Li, "Tuning fractional-order PIλDμ controllers for a solid-core magnetic bearing system, " IEEE Trans. Control Syst. Technol. , vol. 23, no. 4, pp. 1648-1656, Jul. 2015. doi: 10.1109/TCST.2014.2382642.
    [37]
    F. Padula and A. Visioli, "Optimal tuning rules for proportionalintegral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes, " IET Control Theory Appl. , vol. 6, no. 6, pp. 776-786, Apr. 2012. doi: 10.1049/iet-cta.2011.0419.
    [38]
    S. Das, S. Saha, S. Das, and A. Gupta, "On the selection of tuning methodology of FOPID controllers for the control of higher order processes, " ISA Trans. , vol. 50, no. 3, pp. 376-388, Jul. 2011. doi: 10.1016/j.isatra.2011.02.003.
    [39]
    S. Das, I. Pan, S. Das, and A. Gupta, "A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices, " Eng. Appl. Artif. Intell. , vol. 25, no. 2, pp. 430-442, Mar. 2012. doi: 10.1016/j.engappai.2011.10.004.
    [40]
    S. Das, I. Pan, S. Das, and A. Gupta, "Improved model reduction and tuning of fractional-order PIλDμ controllers for analytical rule extraction with genetic programming, " ISA Trans. , vol. 51, no. 2, pp. 237-261, Mar. 2012. doi: 10.1016/j.isatra.2011.10.004.
    [41]
    S. Das, I. Pan, K. Halder, S. Das, and A. Gupta, "LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index, " Appl. Math. Model. , vol. 37, no. 6, pp. 4253-4268, Mar. 2013. doi: 10.1016/j.apm.2012.09.022.
    [42]
    S. Das, I. Pan, and S. Das, "Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time, " ISA Trans. , vol. 52, no. 4, pp. 550-566, Jul. 2013. doi: 10.1016/j.isatra.2013.03.004.
    [43]
    S. Das, I. Pan, S. Das, and A. Gupta, "Master-slave chaos synchronization via optimal fractional order PIλDμ controller with bacterial foraging algorithm, " Nonlinear Dyn. , vol. 69, no. 4, pp. 2193-2206, Sep. 2012. doi: 10.1007/s11071-012-0419-x.
    [44]
    S. Saha, S. Das, S. Das, and A. Gupta, "A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement, " Commun. Nonlinear Sci. Numer. Simul. , vol. 17, no. 9, pp. 3628-3642, Sep. 2012. doi: 10.1016/j.cnsns.2012.01.007.
    [45]
    S. Das, I. Pan, K. Halder, S. Das, and A. Gupta, "Impact of fractional order integral performance indices in LQR based PID controller design via optimum selection of weighting matrices, " in Proc. 2012 IEEE Int. Conf. Computer Communication and Informatics, Coimbatore, India, 2012, pp. 1-6. doi: 10.1109/ICCCI.2012.6158892.
    [46]
    S. Das, I. Pan, S. Das, and A. Gupta, "Genetic algorithm based improved sub-optimal model reduction in nyquist plane for optimal tuning rule extraction of PID and PIλDμ controllers via genetic programming, " in Proc. 2011 IEEE Int. Conf. Process Automation, Control and Computing, Coimbatore, India, 2011, pp. 1-6. doi: 10.1109/PACC.2011.5978962.
    [47]
    A. Rajasekhar, S. Das, and A. Abraham, "Fractional order PID controller design for speed control of chopper fed DC motor drive using artificial bee colony algorithm, " in Proc. 2013 World Congr. Nature and Biologically Inspired Computing, Fargo, ND, USA, 2013, pp. 269-266. doi: 10.1109/NaBIC.2013.6617873.
    [48]
    R. R. Song and Z. L. Chen, "Design of PID controller for maglev system based on an improved PSO with mixed inertia weight, " J. Netw. , vol. 9, no. 6, pp. 1509-1517, Jan. 2014. doi: 10.4304/jnw.9.6.1509-1517.
    [49]
    A. Q. H. Badar, B. S. Umre, and A. S. Junghare, "Reactive power control using dynamic particle swarm optimization for real power loss minimization, " Int. J. Electr. Power Energy Syst. , vol. 41, no. 1, pp. 133-136, Oct. 2012. doi: 10.1016/j.ijepes.2012.03.030.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(28)  / Tables(6)

    Article Metrics

    Article views (1265) PDF downloads(49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return