IEEE/CAA Journal of Automatica Sinica
Citation:  Shuyi Shao and Mou Chen, "FractionalOrder Control for a Novel Chaotic System Without Equilibrium," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 10001009, June 2019. doi: 10.1109/JAS.2016.7510124 
[1] 
E. N. Lorenz, "Deterministic nonperiodic flow, " J. Atmospheric Sciences, vol. 20, no. 2, pp. 130141, 1963. doi: 10.1175/15200469(1963)020<0130:DNF>2.0.CO;2

[2] 
O. E. Rössler, "An equation for continuous chaos, " Physics Letters A, vol. 57, no. 5, pp. 397398, 1976. doi: 10.1016/03759601(76)901018

[3] 
C. X. Liu, T. Liu, L. Liu, and K. Liu, "A new chaotic attractor, " Chaos, Solitons & Fractals, vol. 22, no. 5, pp. 10311038, 2004. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0704.3174

[4] 
Y. X. Li, W. K. S. Tang, and G. R. Chen, "Generating hyperchaos via state feedback control, " Int. J. Bifurcation and Chaos, vol. 15, no. 10, pp. 33673375, 2005. doi: 10.1142/S0218127405013988

[5] 
A. M. Chen, J. N. Lu, J. H. Lv, and S. M. Yu, "Generating hyperchaotic Lü attractor via state feedback control, " Physica A: Statistical Mechanics and Its Applications, vol. 364, pp. 103110, 2006. doi: 10.1016/j.physa.2005.09.039

[6] 
W. C. Chen, "Nonlinear dynamics and chaos in a fractionalorder financial system, " Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 13051314, 2008. http://www.sciencedirect.com/science/article/pii/S0960077906007946

[7] 
S. Das and P. K. Gupta, "A mathematical model on fractional LotkaVolterra equations, " J. Theoretical Biology, vol. 277, no. 1, pp. 16, 2011. doi: 10.1016/j.jtbi.2011.01.034

[8] 
X. Y. Wang and J. M. Song, "Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, " Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 33513357, 2009. doi: 10.1016/j.cnsns.2009.01.010

[9] 
L. Liu, D. L. Liang, and C. X. Liu, "Nonlinear stateobserver control for projective synchronization of a fractionalorder hyperchaotic system, " Nonlinear Dynamics, vol. 69, no. 4, pp. 19291939, 2012. doi: 10.1007/s110710120397z

[10] 
S. Jafari, J. C. Sprott, and S. M. R. H. Golpayegani, "Elementary quadratic chaotic flows with no equilibria, " Physics Letters A, vol. 377, no. 9, pp. 699702, 2013. doi: 10.1016/j.physleta.2013.01.009

[11] 
V. T. Pham, C. Volos, S. Jafari, Z. C. Wei, and X. Wang, "Constructing a novel noequilibrium chaotic system, " Int. J. Bifurcation and Chaos, vol. 24, no. 5, pp. 1450073, 2014. doi: 10.1142/S0218127414500734

[12] 
X. Wang and G. R. Chen, "Constructing a chaotic system with any number of equilibria, " Nonlinear Dynamics, vol. 71, no. 3, pp. 429436, 2013. doi: 10.1007/s1107101206697

[13] 
V. T. Pham, F. Rahma, M. Frasca, and L. Fortuna, "Dynamics and synchronization of a novel hyperchaotic system without equilibrium, " Int. J. Bifurcation and Chaos, vol. 24, no. 6, pp. 1450087, 2014. doi: 10.1142/S0218127414500874

[14] 
L. M. Pecora and T. L. Carroll, "Synchronization in chaotic systems, " Physical Review Letters, vol. 64, no. 8, pp. 821824, 1990. doi: 10.1103/PhysRevLett.64.821

[15] 
T. L. Carroll and L. M. Pecora, "Synchronizing chaotic circuits, " IEEE Trans. Circuits and Systems, vol. 38, no. 4, pp. 453456, 1991. doi: 10.1109/31.75404

[16] 
G. R. Chen and X. H. Yu, Chaos Control: Theory and Applications, Berlin Heidelberg: Springer, 2003.

[17] 
J. M. GonzálezMiranda, Synchronization and Control of Chaos: an Introduction for Scientists and Engineers. London: Imperial College Press, 2004.

[18] 
S. K. Yang, C. L. Chen, and H. T. Yau, "Control of chaos in Lorenz system, " Chaos, Solitons & Fractals, vol. 13, no. 4, pp. 767780, 2002. http://d.old.wanfangdata.com.cn/OAPaper/oai_doajarticles_1b83de48ae95b1c0a1adb1b3cee04d76

[19] 
J. M. Nazzal and A. N. Natsheh, "Chaos control using slidingmode theory, " Chaos, Solitons & Fractals, vol. 33, no. 2, pp. 695702, 2007. http://d.old.wanfangdata.com.cn/Periodical/zzqgyxy201402025

[20] 
N. Cai, Y. W. Jing, and S. Y. Zhang, "Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, " Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 16131620, 2010. doi: 10.1016/j.cnsns.2009.06.012

[21] 
M. Sun, L. X. Tian, S. M. Jiang, and J. Xu, "Feedback control and adaptive control of the energy resource chaotic system, " Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 17251734, 2007. http://www.sciencedirect.com/science/article/pii/S0960077905012129

[22] 
M. T. Yassen, "Chaos control of chaotic dynamical systems using backstepping design, " Chaos, Solitons & Fractals, vol. 27, no. 2, pp. 537548, 2006. http://www.sciencedirect.com/science/article/pii/S0960077905003516

[23] 
C. C. Hua, X. P. Guan, and P. Shi, "Adaptive feedback control for a class of chaotic systems, " Chaos, Solitons & Fractals, vol. 23, no. 3, pp. 757765, 2005. http://www.sciencedirect.com/science/article/pii/S096007790400284X

[24] 
R. Z. Luo and Y. H. Zeng, "The adaptive control of unknown chaotic systems with external disturbance via a single input, " Nonlinear Dynamics, vol. 80, no. 12, pp. 989998, 2015. doi: 10.1007/s1107101519236

[25] 
M. P. Aghababa and B. Hashtarkhani, "Synchronization of unknown uncertain chaotic systems via adaptive control method, " J. Computational and Nonlinear Dynamics, vol. 10, no. 5, pp. 051004, 2015. doi: 10.1115/1.4027976

[26] 
S. G. Gao, H. R. Dong, and B. Ning, "Neural adaptive control of uncertain chaotic systems with input and output saturation, " Nonlinear Dynamics, vol. 80, no. 12, pp. 375385, 2015. doi: 10.1007/s1107101418752

[27] 
W. X. Xie, C. Y. Wen, and Z. G. Li, "Impulsive control for the stabilization and synchronization of Lorenz systems, " Physics Letters A, vol. 275, no. 12, pp. 6772, 2000. doi: 10.1016/S03759601(00)005843

[28] 
I. N'Doye, H. Voos, and M. Darouach, "Observerbased approach for fractionalorder chaotic synchronization and secure communication, " IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 3, pp. 442450, 2013. doi: 10.1109/JETCAS.2013.2265792

[29] 
L. W. Deng and S. M. Song, "Synchronization of fractional order hyperchaotic systems based on output feedback sliding mode control, " Acta Automatica Sinica, vol. 40, no. 11, pp. 24202427, 2014.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201411004

[30] 
Y. Xu, H. Wang, Y. G. Li, and B. Pei, "Image encryption based on synchronization of fractional chaotic systems, " Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 10, pp. 3735 3744, 2014. doi: 10.1016/j.cnsns.2014.02.029

[31] 
A. Oustaloup, J. Sabatier, and P. Lanusse, "From fractal robustness to the CRONE control, " Fractional Calculus and Applied Analysis, vol. 2, no. 1, pp. 130, 1999. https://www.researchgate.net/publication/265365863_From_fractal_robustness_to_the_CRONE_control

[32] 
I. Podlubny, "Fractionalorder systems and ${{PI}^\lambda}{D^\mu}$controller, " IEEE Trans. Automatic Control, vol. 44, no. 1, pp. 208214, 1999. doi: 10.1109/9.739144

[33] 
T. Z. Li, Y. Wang, and M. K. Luo, "Control of fractional chaotic and hyperchaotic systems based on a fractional order controller, " Chinese Physics B, vol. 23, no. 8, pp. 80501, 2014. doi: 10.1088/16741056/23/8/080501

[34] 
N. N. Son and H. P. H. Anh, "Adaptive backstepping selfbalancing control of a twowheel electric scooter, " Int. J. Advanced Robotic Systems, DOI: 10.5772/59100, 2014.

[35] 
I. Podlubny, Fractional Differential Equations. London: Academic Press, 1999.

[36] 
Y. Li, Y. Q. Chen, and I. Podlubny, "MittagLeffler stability of fractional order nonlinear dynamic systems, " Automatica, vol. 45, no. 8, pp. 1965 1969, 2009. doi: 10.1016/j.automatica.2009.04.003

[37] 
S. J. Sadati, D. Baleanu, A. Ranjbar, R. Ghaderi, and T. Abdeljawad, "MittagLeffler stability theorem for fractional nonlinear systems with delay, " Abstract and Applied Analysis, vol. 2010, pp. Article ID 108651, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000800776

[38] 
S. Liu, X. Y. Li, W. Jiang, and X. F. Zhou, "MittagLeffler stability of nonlinear fractional neutral singular systems, " Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 10, pp. 3961 3966, 2012. doi: 10.1016/j.cnsns.2012.02.012

[39] 
D. L. Qian, C. P. Li, R. P. Agarwal, and P. J. Y. Wong, "Stability analysis of fractional differential system with RiemannLiouville derivative, " Mathematical and Computer Modelling, vol. 52, no. 56, pp. 862874, 2010. doi: 10.1016/j.mcm.2010.05.016

[40] 
F. R. Zhang and C. P. Li, "Stability analysis of fractional differential systems with order lying in (1, 2), " Advances in Difference Equations, vol. 2011, pp. Article ID 213485, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3cedf51638269d64bbd9c19c0558532a

[41] 
Z. Q. Qin, R. C. Wu, and Y. F. Lu, "Stability analysis of fractionalorder systems with the RiemannLiouville derivative, " Systems Science & Control Engineering, vol. 2, no. 1, pp. 727731, 2014. doi: 10.1080/21642583.2013.877857

[42] 
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. New York: Elsevier, 2006.

[43] 
L. P. Chen, Y. G. He, Y. Chai, and R. C. Wu, "New results on stability and stabilization of a class of nonlinear fractionalorder systems, " Nonlinear Dynamics, vol. 75, no. 4, pp. 633641, 2014. doi: 10.1007/s1107101310915

[44] 
H. P. Ye, J. M. Gao, and Y. S. Ding, "A generalized Gronwall inequality and its application to a fractional differential equation, " J. Mathematical Analysis and Applications, vol. 328, no. 2, pp. 10751081, 2007. doi: 10.1016/j.jmaa.2006.05.061

[45] 
Z. B. Wu and Y. Z. Zou, "Global fractionalorder projective dynamical systems, " Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 8, pp. 28112819, 2014. doi: 10.1016/j.cnsns.2014.01.007

[46] 
S. M. Yu, Chaotic Systems and Chaotic Circuits: Principle, Design and its Application in Communications. Xi'an: Xidian University Press, 2011. (in Chinese)

[47] 
X. J. Wen, Z. M. Wu, and J. G. Lu, "Stability analysis of a class of nonlinear fractionalorder systems, " IEEE Trans. Circuits and Systems Ⅱ: Express Briefs, vol. 55, no. 11, pp. 11781182, 2008. doi: 10.1109/TCSII.2008.2002571

[48] 
C. C. Hua and X. P. Guan, "Adaptive control for chaotic systems, " Chaos, Solitons & Fractals, vol. 22, no. 1, pp. 5560, 2004. http://d.old.wanfangdata.com.cn/OAPaper/oai_doajarticles_11305037bd0324ec3040c06438da85c5

[49] 
L. P. Liu, Z. Z. Han, and W. L. Li, "Global sliding mode control and application in chaotic systems, " Nonlinear Dynamics, vol. 56, no. 12, pp. 193198, 2009. doi: 10.1007/s110710089391x

[50] 
Q. Jia, "Hyperchaos generated from the Lorenz chaotic system and its control, " Physics Letters A, vol. 366, no. 3, pp. 217222, 2007. doi: 10.1016/j.physleta.2007.02.024

[51] 
I. Petráš, FractionalOrder Nonlinear Systems: Modeling, Analysis and Simulation. Berlin Heidelberg: SpringerVerlag, 2011.
