A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 1
Jan.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Hossein Aminikhah, Mahdieh Tahmasebi and Mahmoud Mohammadi Roozbahani, "The Multi-scale Method for Solving Nonlinear Time Space Fractional Partial Differential Equations," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 299-306, Jan. 2019. doi: 10.1109/JAS.2016.7510058
Citation: Hossein Aminikhah, Mahdieh Tahmasebi and Mahmoud Mohammadi Roozbahani, "The Multi-scale Method for Solving Nonlinear Time Space Fractional Partial Differential Equations," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 299-306, Jan. 2019. doi: 10.1109/JAS.2016.7510058

The Multi-scale Method for Solving Nonlinear Time Space Fractional Partial Differential Equations

doi: 10.1109/JAS.2016.7510058
More Information
  • In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.


  • loading
  • [1]
    X. X. Li, "Numerical solution of fractional differential equations using cubic b-spline wavelet collocation method, " Commun. Nonlinear Sci. Numer. Simul., vol. 17, vol. 10, pp. 3934-3946, Oct. 2012. http://www.sciencedirect.com/science/article/pii/S1007570412000652
    K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. New York, USA:John Wiley and Sons, 1993.
    I. Podlubny, Fractional Differential Equations. San Diego, CA, USA:Academic Press, 1999.
    X. K. Li, X. H. Han, and X. P. Wang, "Numerical modeling of viscoelastic flows using equal low-order finite elements, " Comput. Methods Appl. Mech. Eng., vol. 199, no. 9-12, pp. 570-581, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509003557
    R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto, "Fractional calculus and continuous-time finance. Ⅲ. The diffusion limit, " in Trends in Mathematics-Mathematical finance, M. Kohlmann and S. Tang, Eds. Basel, Switzerland: Birkhäuser, 2001, pp. 171-180. doi: 10.1007%252F978-3-0348-8291-0_17
    M. Raberto, E. Scalas, and F. Mainardi, "Waiting-times and returns in high-frequency financial data: an empirical study, " Phys. A, vol. 314, no. 1-4, pp. 749-755, Nov. 2002. http://www.sciencedirect.com/science/article/pii/S0378437102010488
    L. Sabatelli, S. Keating, J. Dudley, and P. Richmond, "Waiting time distributions in financial markets, " Eur. Phys. J. B, vol. 27, no. 2, pp. 273-275, May 2002. Waiting time distributions in financial markets,
    B. Baeumer, D. A. Benson, M. M. Meerschaert, and S. W. Wheatcraft, "Subordinated advection-dispersion equation for contaminant transport, " Water Resour. Res., vol. 37, no. 6, pp. 1543-1550, Jun. 2001. http://www.mendeley.com/research/subordinated-advectiondispersion-equation-contaminant-transport/
    D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, "Fractional dispersion, Lévy motion, and the MADE tracer tests, " Trans. Porous Media, vol. 42, no. 1-2, pp. 211-240, Jan. 2001. doi: 10.1023/A%3A1006733002131
    D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, "Application of a fractional advection-dispersion equation, " Water Resour. Res., vol. 36, no. 6, pp. 1403-1412, Feb. 2000. http://www.mendeley.com/catalog/application-fractional-advectiondispersion-equation/
    D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, "The fractional-order governing equation of Lévy motion, " Water Resour. Res., vol. 36, no. 6, pp. 1413-1423, Feb. 2000. http://www.mendeley.com/catalog/fractionalorder-governing-equation-levy-motion/
    R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, "Multiscaling fractional advection-dispersion equations and their solutions, " Water Resour. Res., vol. 39, no. 1, pp. 1022, Jan. 2003. http://www.ncbi.nlm.nih.gov/pubmed/165604
    C. Tadjeran, D. A. Benson, and M. M. Meerschaert, "Fractional Radial flow and Its Application to Field Data." 2003.
    J. A. T. Machado, "Discrete-time fractional-order controllers, " Fract. Calc. Appl. Anal., vol. 4, no. 1, pp. 47-66, Jan. 2001. http://www.mendeley.com/catalog/discretetime-fractionalorder-controllers/
    G. J. Fix and J. P. Roof, "Least squares finite-element solution of a fractional order two-point boundary value problem, " Comput. Math. Appl., vol. 48, no. 7-8, pp. 1017-1033, Oct. 2004. https://www.sciencedirect.com/science/article/pii/S0898122104003438
    S. Shen, F. Liu, V. Anh, and I. Turner, "The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, " IMA J. Appl. Math., vol. 73, no. 6, pp. 850-872, Dec. 2008. https://ieeexplore.ieee.org/document/8145484
    M. M. Meerschaert and C. Tadjeran, "Finite difference approximations for fractional advection-dispersion flow equations, " J. Comput. Appl. Math., vol. 172, no. 1, pp. 65-77, Nov. 2004. http://dl.acm.org/citation.cfm?id=1036142.1036147
    R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems (2nd edition). Malabar, Florida, USA:Krieger Publishing, 1994.
    C. P. Li and F. H. Zeng, Numerical Methods for Fractional Calculus. New York, USA:Chapman and Hall, 2015.
    B. L. Guo, X. K. Pu, and F. H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions. Singapore:World Scientific Publishing Co. Pte. Ltd., 2015.
    Y. F. Luchko and H. M. Srivastava, "The exact solution of certain differential equations of fractional order by using operational calculus, " Comput. Math. Appl., vol. 29, no. 8, pp. 73-85, Apr. 1995. https://www.sciencedirect.com/science/article/pii/089812219500031S
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives:Theory and applications. New York, USA:Gordon and Breach, 1993.
    A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations. Amsterdam, Netherlands:Elsevier, 2006.
    Z. M. Odibat and S. Momani, "Application of variational iteration method to nonlinear differential equations of fractional order, " Int. J. Nonlinear Sci. Numer. Simul., vol. 7, no. 1, pp. 27-34, Jan. 2006.
    S. Momani and Z. Odibat, "Numerical comparison of methods for solving linear differential equations of fractional order, " Chaos Solitons Fractals, vol. 31, no. 5, pp. 1248-1255, Mar. 2007. https://www.sciencedirect.com/science/article/pii/S0960077905010374
    S. Momani, "Non-perturbative analytical solutions of the space-and time-fractional Burgers equations, " Chaos Solitons Fractals, vol. 28, no. 4, pp. 930-937, May 2006. https://www.sciencedirect.com/science/article/pii/S096007790500843X
    W. Dahmen, A. Kurdila, and P. Oswald, Multi-scale Wavelet Methods for Partial Differential Equations. Toronto, Canada:Academic Press, 1997.
    D. A. McLaren, "Sequential and localized implicit wavelet based solvers for stiff partial differential equations, " Ph.D. dissertation, Univ. of Ottawa, Ottawa, Canada, 2012.
    J. S. Hesthaven and L. M. Jameson, "A Wavelet optimized adaptive multi-domain method, " J. Comput. Phys., vol. 145, no. 1, pp. 280-296, Sep. 1998. http://www.sciencedirect.com/science/article/pii/S0021999198960120
    M. Mehra and N. K. R. Kevlahan, "An adaptive multilevel wavelet solver for elliptic equations on an optimal spherical geodesic grid, " SIAM J. Sci. Comput., vol. 30, no. 6, pp. 3073-3086, Oct. 2008. http://dl.acm.org/citation.cfm?id=1461743
    S. Müller and Y. Stiriba, "A multilevel finite volume method with multiscale-based grid adaptation for steady compressible flows, " J. Comput. Appl. Math., vol. 277, no. 2, pp. 223-233, May 2009. https://www.sciencedirect.com/science/article/pii/S0377042708001064
    O. V. Vasilyev and S. Paolucci, "A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, " J. Comput. Phys., vol. 125, no. 2, pp. 498-512, May 1996.
    H. Aminikhah, M. Tahmasebi, and M. M. Roozbahani, "Numerical solution for the time-space fractional partial differential equation by using the wavelet multi-scale method, " U. P. B. Sci. Bull.-Ser. A, vol. 78, no. 4, pp. 175-188, Jan. 2016.
    C. Blatter, Wavelets:A Primer. Boca Raton, USA:A K Peters/CRC Press, 2002.
    J. C. Goswami and A. K. Chan, Fundamentals of Wavelets. Theory, Algorithms, and Applications. New York, USA:John Wiley and Sons, 1999.
    S. Mallat, A Wavelet Tour of Signal Processing (2nd edition). New York, USA:Academic Press, 1999.
    W. Sweldens, "The construction and application of wavelets in numerical analysis, " Ph.D. dissertation, Columbia Univ., Columbia, USA, 1995.
    K. Diethelm, N. J. Ford, and A. D. Freed, "Detailed error analysis for a fractional Adams method, " Numer. Algorithms, vol. 36, no. 1, pp. 31-52, May 2004. doi: 10.1023/B%3ANUMA.0000027736.85078.be


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (854) PDF downloads(33) Cited by()


    DownLoad:  Full-Size Img  PowerPoint