IEEE/CAA Journal of Automatica Sinica
Citation:  Hossein Aminikhah, Mahdieh Tahmasebi and Mahmoud Mohammadi Roozbahani, "The Multiscale Method for Solving Nonlinear Time Space Fractional Partial Differential Equations," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 299306, Jan. 2019. doi: 10.1109/JAS.2016.7510058 
[1] 
X. X. Li, "Numerical solution of fractional differential equations using cubic bspline wavelet collocation method, " Commun. Nonlinear Sci. Numer. Simul., vol. 17, vol. 10, pp. 39343946, Oct. 2012. http://www.sciencedirect.com/science/article/pii/S1007570412000652

[2] 
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. New York, USA:John Wiley and Sons, 1993.

[3] 
I. Podlubny, Fractional Differential Equations. San Diego, CA, USA:Academic Press, 1999.

[4] 
X. K. Li, X. H. Han, and X. P. Wang, "Numerical modeling of viscoelastic flows using equal loworder finite elements, " Comput. Methods Appl. Mech. Eng., vol. 199, no. 912, pp. 570581, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509003557

[5] 
R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto, "Fractional calculus and continuoustime finance. Ⅲ. The diffusion limit, " in Trends in MathematicsMathematical finance, M. Kohlmann and S. Tang, Eds. Basel, Switzerland: Birkhäuser, 2001, pp. 171180. doi: 10.1007%252F9783034882910_17

[6] 
M. Raberto, E. Scalas, and F. Mainardi, "Waitingtimes and returns in highfrequency financial data: an empirical study, " Phys. A, vol. 314, no. 14, pp. 749755, Nov. 2002. http://www.sciencedirect.com/science/article/pii/S0378437102010488

[7] 
L. Sabatelli, S. Keating, J. Dudley, and P. Richmond, "Waiting time distributions in financial markets, " Eur. Phys. J. B, vol. 27, no. 2, pp. 273275, May 2002. Waiting time distributions in financial markets,

[8] 
B. Baeumer, D. A. Benson, M. M. Meerschaert, and S. W. Wheatcraft, "Subordinated advectiondispersion equation for contaminant transport, " Water Resour. Res., vol. 37, no. 6, pp. 15431550, Jun. 2001. http://www.mendeley.com/research/subordinatedadvectiondispersionequationcontaminanttransport/

[9] 
D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, "Fractional dispersion, Lévy motion, and the MADE tracer tests, " Trans. Porous Media, vol. 42, no. 12, pp. 211240, Jan. 2001. doi: 10.1023/A%3A1006733002131

[10] 
D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, "Application of a fractional advectiondispersion equation, " Water Resour. Res., vol. 36, no. 6, pp. 14031412, Feb. 2000. http://www.mendeley.com/catalog/applicationfractionaladvectiondispersionequation/

[11] 
D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, "The fractionalorder governing equation of Lévy motion, " Water Resour. Res., vol. 36, no. 6, pp. 14131423, Feb. 2000. http://www.mendeley.com/catalog/fractionalordergoverningequationlevymotion/

[12] 
R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, "Multiscaling fractional advectiondispersion equations and their solutions, " Water Resour. Res., vol. 39, no. 1, pp. 1022, Jan. 2003. http://www.ncbi.nlm.nih.gov/pubmed/165604

[13] 
C. Tadjeran, D. A. Benson, and M. M. Meerschaert, "Fractional Radial flow and Its Application to Field Data." 2003.

[14] 
J. A. T. Machado, "Discretetime fractionalorder controllers, " Fract. Calc. Appl. Anal., vol. 4, no. 1, pp. 4766, Jan. 2001. http://www.mendeley.com/catalog/discretetimefractionalordercontrollers/

[15] 
G. J. Fix and J. P. Roof, "Least squares finiteelement solution of a fractional order twopoint boundary value problem, " Comput. Math. Appl., vol. 48, no. 78, pp. 10171033, Oct. 2004. https://www.sciencedirect.com/science/article/pii/S0898122104003438

[16] 
S. Shen, F. Liu, V. Anh, and I. Turner, "The fundamental solution and numerical solution of the Riesz fractional advectiondispersion equation, " IMA J. Appl. Math., vol. 73, no. 6, pp. 850872, Dec. 2008. https://ieeexplore.ieee.org/document/8145484

[17] 
M. M. Meerschaert and C. Tadjeran, "Finite difference approximations for fractional advectiondispersion flow equations, " J. Comput. Appl. Math., vol. 172, no. 1, pp. 6577, Nov. 2004. http://dl.acm.org/citation.cfm?id=1036142.1036147

[18] 
R. D. Richtmyer and K. W. Morton, Difference Methods for InitialValue Problems (2nd edition). Malabar, Florida, USA:Krieger Publishing, 1994.

[19] 
C. P. Li and F. H. Zeng, Numerical Methods for Fractional Calculus. New York, USA:Chapman and Hall, 2015.

[20] 
B. L. Guo, X. K. Pu, and F. H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions. Singapore:World Scientific Publishing Co. Pte. Ltd., 2015.

[21] 
Y. F. Luchko and H. M. Srivastava, "The exact solution of certain differential equations of fractional order by using operational calculus, " Comput. Math. Appl., vol. 29, no. 8, pp. 7385, Apr. 1995. https://www.sciencedirect.com/science/article/pii/089812219500031S

[22] 
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives:Theory and applications. New York, USA:Gordon and Breach, 1993.

[23] 
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations. Amsterdam, Netherlands:Elsevier, 2006.

[24] 
Z. M. Odibat and S. Momani, "Application of variational iteration method to nonlinear differential equations of fractional order, " Int. J. Nonlinear Sci. Numer. Simul., vol. 7, no. 1, pp. 2734, Jan. 2006.

[25] 
S. Momani and Z. Odibat, "Numerical comparison of methods for solving linear differential equations of fractional order, " Chaos Solitons Fractals, vol. 31, no. 5, pp. 12481255, Mar. 2007. https://www.sciencedirect.com/science/article/pii/S0960077905010374

[26] 
S. Momani, "Nonperturbative analytical solutions of the spaceand timefractional Burgers equations, " Chaos Solitons Fractals, vol. 28, no. 4, pp. 930937, May 2006. https://www.sciencedirect.com/science/article/pii/S096007790500843X

[27] 
W. Dahmen, A. Kurdila, and P. Oswald, Multiscale Wavelet Methods for Partial Differential Equations. Toronto, Canada:Academic Press, 1997.

[28] 
D. A. McLaren, "Sequential and localized implicit wavelet based solvers for stiff partial differential equations, " Ph.D. dissertation, Univ. of Ottawa, Ottawa, Canada, 2012.

[29] 
J. S. Hesthaven and L. M. Jameson, "A Wavelet optimized adaptive multidomain method, " J. Comput. Phys., vol. 145, no. 1, pp. 280296, Sep. 1998. http://www.sciencedirect.com/science/article/pii/S0021999198960120

[30] 
M. Mehra and N. K. R. Kevlahan, "An adaptive multilevel wavelet solver for elliptic equations on an optimal spherical geodesic grid, " SIAM J. Sci. Comput., vol. 30, no. 6, pp. 30733086, Oct. 2008. http://dl.acm.org/citation.cfm?id=1461743

[31] 
S. Müller and Y. Stiriba, "A multilevel finite volume method with multiscalebased grid adaptation for steady compressible flows, " J. Comput. Appl. Math., vol. 277, no. 2, pp. 223233, May 2009. https://www.sciencedirect.com/science/article/pii/S0377042708001064

[32] 
O. V. Vasilyev and S. Paolucci, "A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, " J. Comput. Phys., vol. 125, no. 2, pp. 498512, May 1996.

[33] 
H. Aminikhah, M. Tahmasebi, and M. M. Roozbahani, "Numerical solution for the timespace fractional partial differential equation by using the wavelet multiscale method, " U. P. B. Sci. Bull.Ser. A, vol. 78, no. 4, pp. 175188, Jan. 2016.

[34] 
C. Blatter, Wavelets:A Primer. Boca Raton, USA:A K Peters/CRC Press, 2002.

[35] 
J. C. Goswami and A. K. Chan, Fundamentals of Wavelets. Theory, Algorithms, and Applications. New York, USA:John Wiley and Sons, 1999.

[36] 
S. Mallat, A Wavelet Tour of Signal Processing (2nd edition). New York, USA:Academic Press, 1999.

[37] 
W. Sweldens, "The construction and application of wavelets in numerical analysis, " Ph.D. dissertation, Columbia Univ., Columbia, USA, 1995.

[38] 
K. Diethelm, N. J. Ford, and A. D. Freed, "Detailed error analysis for a fractional Adams method, " Numer. Algorithms, vol. 36, no. 1, pp. 3152, May 2004. doi: 10.1023/B%3ANUMA.0000027736.85078.be
