Volume 13
Issue 1
IEEE/CAA Journal of Automatica Sinica
| Citation: | L. Lin and X. Luo, “Dual channel graph convolutional networks via personalized pagerank,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 1, pp. 221–223, Jan. 2026. doi: 10.1109/JAS.2025.125492 |
| [1] |
K. Ding, Z. Xu, H. Tong, and H. Liu. “Data augmentation for deep graph learning: A survey,” ACM SIGKDD Explorations Newsletter, vol. 24, no. 2, pp. 61−77. 2022.
|
| [2] |
K. Ding, C. Zhang, J. Tang, N. Chawla, and H. Liu, “Toward graph minimally-supervised learning,” in Proc. KDD, 2022, pp. 4782–4783.
|
| [3] |
D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, and X. Zhang. “Learning to drop: Robust graph neural network via topological denoising,” in Proc. WSDM, 2021, pp. 779–787.
|
| [4] |
C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based semi-supervised classification,” in Proc. WWW, 2018, pp. 499–508.
|
| [5] |
M. Azabou, V. Ganesh, S. Thakoor, C. Lin, L. Sathidevi, R. Liu, M. Valko, P. Velickovic, and E. Dyer, “Half-Hop: A graph upsampling approach for slowing down message passing,” in Proc. ICML, 2023, pp. 1341–1360.
|
| [6] |
F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph convolutional networks,” in Proc. ICML, 2019, pp. 6861–6871.
|
| [7] |
C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “Graphzoom: A multi-level spectral approach for accurate and scalable graph embedding,” in Proc. ICLR, 2020, pp. 1–20.
|
| [8] |
X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “AM-GCN: Adaptive multi-channel graph convolutional networks,” in Proc. KDD, 2021, pp. 1243–1253.
|
| [9] |
W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang. “Node similarity preserving graph convolutional networks,” in Proc. WSDM, 2021, pp. 148–156.
|
| [10] |
R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using pagerank vectors,” in Proc. FOCS, 2006, pp. 475–486.
|
| [11] |
L. Lin, R. Li, and T. Jia, “Scalable and effective conductance-based graph clustering,” in Proc. AAAI, 2023, pp. 4471–4478.
|
| [12] |
Y. Yu, L. Lin, Q. Liu, Z. Wang, X. Ou, and T. Jia, “GSD-GNN: generalizable and scalable algorithms for decoupled graph neural networks,” in Proc. ICMR, 2024, pp. 64–72.
|
| [13] |
T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional networks,” in Proc. ICMR, 2017, pp. 1–14.
|
| [14] |
W. Hamilton, Z. Ying, J. Leskovec, “Inductive representation learning on large graphs,” in Proc. NeurIPS, 2017, pp. 1024–1034.
|
| [15] |
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. “Graph attention networks,” in Proc. ICLR, 2018, pp. 1–12.
|
| [16] |
W. Zhang, M. Yang, Z. Sheng, Y. Li, W. Ouyang, Y. Tao, and B. Cui. “Node dependent local smoothing for scalable graph learning,” in Proc. NeurIPS, 2021, pp. 20321–20332.
|
| [17] |
K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka, “Representation learning on graphs with jumping knowledge networks,” in Proc. ICML, 2018, pp. 5453–5462.
|
| [18] |
J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural networks meet personalized pagerank,” in Proc. ICLR, 2019, pp. 1–15.
|
| [19] |
M. Chen, Z. Wei, B. Ding, Y. Li, Y. Yuan, X. Du, J. Wen, “Scalable graph neural networks via bidirectional propagation,” in Proc. NeurIPS, 2021, pp. 14556–14566.
|
| [20] |
K. Ding, Y. Wang, Y. Yang, and H. Liu, “Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning,” in Proc. AAAI, 2023, pp. 7378–7386.
|
| [21] |
G. Xue, M. Zhong, T. Qian, and J. Li, “PSA-GNN: An augmented GNN framework with priori subgraph knowledge,” Neural Networks vol. 173, p. 106155, 2024.
|
| [22] |
W. Zhao, Q. Wu, C. Yang, and J. Yan,“GeoMix: Towards geometry-aware data augmentation,” in Proc. KDD, 2024, pp. 4500–4511.
|
| [23] |
Z. Liao, T. Liu, Y. He, and L. Lin, “Effective temporal graph learning via personalized pagerank,” Entropy, vol. 26, no. 7, pp. 588–605, 2024.
|
| [24] |
L. Lin, Y. Yu, Z. Wang, Z. Wang, Y. Zhao, J. Zhao, and T. Jia, “PSNE: Efficient spectral sparsification algorithms for scaling network embedding,” in Proc. CIKM, 2024, pp. 1420–1429.
|
| [25] |
F. Bi, X. Luo, B. Shen, H. Dong, and Z. Wang, “Proximal alternating-direction-method-of-multipliers-incorporated nonnegative latent factor analysis,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1388−1406, 2023.
|
| [26] |
J. Chen, Y. Yuan, and X. Luo,“ SDGNN: Symmetry-preserving dual-stream graph neural networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp, 1717−1719, 2024
|