Volume 12
Issue 11
IEEE/CAA Journal of Automatica Sinica
| Citation: | T.-Y. Chen, W.-N. Chen, F.-F. Wei, X.-Q. Guo, W.-X. Song, R. Zhu, Q. Lin, and J. Zhang, “The confluence of evolutionary computation and multi-agent systems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 11, pp. 2175–2193, Nov. 2025. doi: 10.1109/JAS.2025.125246 |
| [1] |
S. Mirjalili, “Genetic algorithm,” in Evolutionary Algorithms and Neural Networks: Theory and Applications, S. Mirjalili, Ed. Cham, Switzerland: Springer, 2019, pp. 43−55.
|
| [2] |
M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006. doi: 10.1109/MCI.2006.329691
|
| [3] |
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int. Conf. Neural Networks, Perth, WA, Australia, 1995, pp. 1942−1948.
|
| [4] |
Z.-H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary computation for complex continuous optimization,” Artif. Intell. Rev., vol. 55, no. 1, pp. 59–110, Jan. 2022. doi: 10.1007/s10462-021-10042-y
|
| [5] |
A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,” IEEE Access, vol. 6, pp. 28573–28593, Apr. 2018. doi: 10.1109/ACCESS.2018.2831228
|
| [6] |
D. Helbing, “Agent-based modeling,” in Social Self-Organization: Agent-Based Simulations and Experiments to Study Emergent Social Behavior, D. Helbing, Ed. Berlin, Germany: Springer, 2012, pp. 25−70.
|
| [7] |
R. A. Sarker and T. Ray, “Agent based evolutionary approach: An introduction,” in Agent-Based Evolutionary Search, R. A. Sarker and T. Ray, Eds. Berlin, Germany: Springer, 2010, pp. 1−11.
|
| [8] |
A. Byrski, R. Dreżewski, L. Siwik, and M. Kisiel-Dorohinicki, “Evolutionary multi-agent systems,” Knowl. Eng. Rev., vol. 30, no. 2, pp. 171–186, Mar. 2015. doi: 10.1017/S0269888914000289
|
| [9] |
V. R. de Carvalho and J. S. Sichman, “Evolutionary computation meets multiagent systems for better solving optimization problems,” in Evolutionary Computing and Artificial Intelligence, F. Koch, A. Yoshikawa, S. Wang, and T. Terano, Eds. Singapore, Singapore: Springer, 2019, pp. 27−41.
|
| [10] |
P. Lucidarme, “Evolutionary computation of multi-robot/agent systems,” in Frontiers in Evolutionary Robotics, H. Iba, Ed. Vienna, Austria: IntechOpen, 2008.
|
| [11] |
T. Niknam, A. M. Ranjbar, A. R. Shirani, B. Mozafari, and A. Ostadi, “Optimal operation of distribution system with regard to distributed generation: A comparison of evolutionary methods,” in Proc. Fourtieth IAS Annu. Meeting. Conf. Rec. 2005 Industry Applications Conf., Hong Kong, China, 2005, pp. 2690−2697.
|
| [12] |
B. Wang, N.-L. Tai, H.-Q. Zhai, J. Ye, J.-D. Zhu, and L.-B. Qi, “Hybrid optimization method based on evolutionary algorithm and particle swarm optimization for short-term load forecasting,” Proc. CSU-EPSA, vol. 20, no. 3, pp. 50–55, Jun. 2008.
|
| [13] |
M. Marzband, E. Yousefnejad, A. Sumper, and J. Luis Domínguez-García, “Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 265–274, Feb. 2016. doi: 10.1016/j.ijepes.2015.09.010
|
| [14] |
M. A. Kamel, X. Yu, and Y. Zhang, “Real-time fault-tolerant formation control of multiple WMRs based on hybrid GA-PSO algorithm,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1263–1276, Jul. 2021. doi: 10.1109/TASE.2020.3000507
|
| [15] |
G. Che, L. Liu, and Z. Yu, “An improved ant colony optimization algorithm based on particle swarm optimization algorithm for path planning of autonomous underwater vehicle,” J. Ambient Intell. Human. Comput., vol. 11, no. 8, pp. 3349–3354, Aug. 2020. doi: 10.1007/s12652-019-01531-8
|
| [16] |
J. Zhou, X. Zhao, X. Zhang, D. Zhao, and H. Li, “Task allocation for multi-agent systems based on distributed many-objective evolutionary algorithm and greedy algorithm,” IEEE Access, vol. 8, pp. 19306–19318, Jan. 2020. doi: 10.1109/ACCESS.2020.2967061
|
| [17] |
J. R. Koza and R. Poli, “Genetic programming,” in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, E. K. Burke and G. Kendall, Eds. New York, USA: Springer, 2005, pp. 127−164.
|
| [18] |
K. V. Price, “Differential evolution,” in Handbook of Optimization: From Classical to Modern Approach, I. Zelinka, V. Snášel, and A. Abraham, Eds. Berlin, Germany: Springer, 2013, pp. 187−214.
|
| [19] |
D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural evolution strategies,” in Proc. IEEE Congr. Evolutionary Computation (IEEE World Congr. Computational Intelligence), Hong Kong, China, 2008, pp. 3381−3387.
|
| [20] |
W. Zhong, J. Liu, M. Xue, and L. Jiao, “A multiagent genetic algorithm for global numerical optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 34, no. 2, pp. 1128–1141, Apr. 2004. doi: 10.1109/TSMCB.2003.821456
|
| [21] |
A. S. S. M. Barkat Ullah, R. Sarker, D. Comfort, and C. Lokan, “An agent-based memetic algorithm (AMA) for solving constrained optimazation problems,” in Proc. IEEE Congr. Evolutionary Computation, Singapore, Singapore, 2007, pp. 999−1006.
|
| [22] |
J. Liu, W. Zhong, and L. Jiao, “A multiagent evolutionary algorithm for combinatorial optimization problems,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 40, no. 1, pp. 229–240, Feb. 2010. doi: 10.1109/TSMCB.2009.2025775
|
| [23] |
B. Zhao, C. X. Guo, and Y. J. Cao, “A multiagent-based particle swarm optimization approach for optimal reactive power dispatch,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1070–1078, May 2005. doi: 10.1109/TPWRS.2005.846064
|
| [24] |
Q. Dai, J. Liu, and Q. Wei, “Optimal photovoltaic/battery energy storage/electric vehicle charging station design based on multi-agent particle swarm optimization algorithm,” Sustainability, vol. 11, no. 7, p. 1973, Apr. 2019. doi: 10.3390/su11071973
|
| [25] |
R. Ahmad, Y.-C. Lee, S. Rahimi, and B. Gupta, “A multi-agent based approach for particle swarm optimization,” in Proc. Int. Conf. Integration of Knowledge Intensive Multi-Agent Systems, Waltham, USA, 2007, pp. 267−271.
|
| [26] |
R. Kumar, D. Sharma, and A. Sadu, “A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch,” Int. J. Electr. Power Energy Syst., vol. 33, no. 1, pp. 115–123, Jan. 2011. doi: 10.1016/j.ijepes.2010.06.021
|
| [27] |
M. Milano and A. Roli, “MAGMA: A multiagent architecture for metaheuristics,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 34, no. 2, pp. 925–941, Apr. 2004. doi: 10.1109/TSMCB.2003.818432
|
| [28] |
A. Byrski and R. Schaefer, “Formal model for agent-based asynchronous evolutionary computation,” in Proc. IEEE Congr. Evolutionary Computation, Trondheim, Norway, 2009, pp. 78−85.
|
| [29] |
T. Riechmann, “Genetic algorithm learning and evolutionary games,” J. Econ. Dyn. Control, vol. 25, pp. 6–7, Jun. 1019.
|
| [30] |
C. Leboucher, H. S. Shin, P. Siarry, S. Le Ménec, R. Chelouah, and A. Tsourdos, “Convergence proof of an enhanced particle swarm optimisation method integrated with evolutionary game theory,” Inf. Sci., pp. 346–347, Jun. 2016.
|
| [31] |
M. Dubreuil, C. Gagne, and M. Parizeau, “Analysis of a master-slave architecture for distributed evolutionary computations,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 36, no. 1, pp. 229–235, Feb. 2006. doi: 10.1109/TSMCB.2005.856724
|
| [32] |
Q. Yang, W.-N. Chen, T. Gu, H. Zhang, H. Yuan, S. Kwong, and J. Zhang, “A distributed swarm Optimizer with adaptive communication for large-scale optimization,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3393–3408, Jul. 2020. doi: 10.1109/TCYB.2019.2904543
|
| [33] |
Z.-H. Zhan, Z.-J. Wang, H. Jin, and J. Zhang, “Adaptive distributed differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4633–4647, Nov. 2020. doi: 10.1109/TCYB.2019.2944873
|
| [34] |
Z.-J. Wang, Z.-H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adaptive granularity learning distributed particle swarm optimization for large-scale optimization,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1175–1188, Mar. 2021. doi: 10.1109/TCYB.2020.2977956
|
| [35] |
T. Ishimizu and K. Tagawa, “A structured differential evolution for various network topologies,” Int. J. Comput. Commun. Control, vol. 4, no. 1, pp. 2–8, Jan. 2010.
|
| [36] |
M. Kurdi, “A new hybrid island model genetic algorithm for job shop scheduling problem,” Comput. Ind. Eng., vol. 88, pp. 273–283, Oct. 2015. doi: 10.1016/j.cie.2015.07.015
|
| [37] |
X. Sun, L.-F. Lai, P. Chou, L.-R. Chen, and C.-C. Wu, “On GPU implementation of the island model genetic algorithm for solving the unequal area facility layout problem,” Appl. Sci., vol. 8, no. 9, p. 1604, Sep. 2018. doi: 10.3390/app8091604
|
| [38] |
Ş. Gülcü and H. Kodaz, “A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization,” Eng. Appl. Artif. Intell., vol. 45, pp. 33–45, Oct. 2015. doi: 10.1016/j.engappai.2015.06.013
|
| [39] |
Ş. Gülcü, M. Mahi, Ö. K. Baykan, and H. Kodaz, “A parallel cooperative hybrid method based on ant colony optimization and 3-Opt algorithm for solving traveling salesman problem,” Soft Comput., vol. 22, no. 5, pp. 1669–1685, Mar. 2018. doi: 10.1007/s00500-016-2432-3
|
| [40] |
J. Collings and E. Kim, “A distributed and decentralized approach for ant colony optimization with fuzzy parameter adaptation in traveling salesman problem,” in Proc. IEEE Symp. Swarm Intelligence, Orlando, USA, 2014, pp. 1−9.
|
| [41] |
R. Dreżewski and K. Doroz, “An agent-based co-evolutionary multi-objective algorithm for portfolio optimization,” Symmetry, vol. 9, no. 9, p. 168, Aug. 2017. doi: 10.3390/sym9090168
|
| [42] |
Z.-J. Wang, Z.-H. Zhan, W.-J. Yu, Y. Lin, J. Zhang, T.-L. Gu, and J. Zhang, “Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2715–2729, Jun. 2020. doi: 10.1109/TCYB.2019.2933499
|
| [43] |
M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with differential grouping for large scale optimization,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014. doi: 10.1109/TEVC.2013.2281543
|
| [44] |
Y.-H. Jia, W.-N. Chen, T. Gu, H. Zhang, H.-Q. Yuan, S. Kwong, and J. Zhang, “Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 188–202, Apr. 2019. doi: 10.1109/TEVC.2018.2817889
|
| [45] |
W.-N. Chen, Y.-H. Jia, F. Zhao, X.-N. Luo, X.-D. Jia, and J. Zhang, “A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 842–857, Oct. 2019. doi: 10.1109/TEVC.2019.2893447
|
| [46] |
N. R. Sabar, J. Abawajy, and J. Yearwood, “Heterogeneous cooperative co-evolution memetic differential evolution algorithm for big data optimization problems,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 315–327, Apr. 2017. doi: 10.1109/TEVC.2016.2602860
|
| [47] |
R. Dreżewski, “A model of co-evolution in multi-agent system,” in Proc. 3rd Int. Central and Eastern European Conf. Multi-Agent Systems, Prague, Czech Republic, 2003, pp. 314−323.
|
| [48] |
Y. Lorion, T. Bogon, I. J. Timm, and O. Drobnik, “An agent based parallel particle swarm optimization - APPSO,” in Proc. IEEE Swarm Intelligence Symp., Nashville, USA, 2009, pp. 52−59.
|
| [49] |
M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A faster and more accurate differential grouping for large-scale black-box optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 6, pp. 929–942, Dec. 2017. doi: 10.1109/TEVC.2017.2694221
|
| [50] |
S. Strasser, J. Sheppard, N. Fortier, and R. Goodman, “Factored evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 281–293, Apr. 2017. doi: 10.1109/TEVC.2016.2601922
|
| [51] |
Y.-H. Jia, Y. Mei, and M. Zhang, “Contribution-based cooperative co-evolution for nonseparable large-scale problems with overlapping subcomponents,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4246–4259, Jun. 2022. doi: 10.1109/TCYB.2020.3025577
|
| [52] |
Y.-H. Jia, Y.-R. Zhou, Y. Lin, W.-J. Yu, Y. Gao, and L. Lu, “A distributed cooperative co-evolutionary CMA evolution strategy for global optimization of large-scale overlapping problems,” IEEE Access, vol. 7, pp. 19821–19834, Feb. 2019. doi: 10.1109/ACCESS.2019.2897282
|
| [53] |
A. Song, W.-N. Chen, P.-T. Luo, Y.-J. Gong, and J. Zhang, “Overlapped cooperative co-evolution for large scale optimization,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics), Banff, Canada, 2017, pp. 3689−3694.
|
| [54] |
Z.-J. Wang, Q. Yang, Y.-H. Zhang, S.-H. Chen, and Y.-G. Wang, “Superiority combination learning distributed particle swarm optimization for large-scale optimization,” Appl. Soft Comput., vol. 136, p. 110101, Mar. 2023. doi: 10.1016/j.asoc.2023.110101
|
| [55] |
K. Socha and M. Kisiel-Dorohinicki, “Agent-based evolutionary multiobjective optimisation,” in Proc. Congr. Evolutionary Computation, Honolulu, USA, 2002, pp. 109−114.
|
| [56] |
Y. Yan, S. Yang, D. Wang, and D. Wang, “Agent based evolutionary dynamic optimization,” in Agent-Based Evolutionary Search, R. A. Sarker and T. Ray, Eds. Berlin, Germany: Springer, 2010, pp. 97−116.
|
| [57] |
J. Huang, J. Liu, and X. Yao, “A multi-agent evolutionary algorithm for software module clustering problems,” Soft Comput., vol. 21, no. 12, pp. 3415–3428, Jun. 2017. doi: 10.1007/s00500-015-2018-5
|
| [58] |
W. Li, Y. Hu, C. Jiang, S. Wu, Q. Bai, and E. Lai, “ABEM: An adaptive agent-based evolutionary approach for influence maximization in dynamic social networks,” Appl. Soft Comput., vol. 136, p. 110062, Mar. 2023. doi: 10.1016/j.asoc.2023.110062
|
| [59] |
J. Yang, Y. Liu, Z. Wu, and M. Yao, “The evolution of cooperative behaviours in physically heterogeneous multi-robot systems,” Int. J. Adv. Rob. Syst., vol. 9, no. 6, p. 253, Dec. 2012. doi: 10.5772/53089
|
| [60] |
G. S. Nitschke, M. C. Schut, and A. E. Eiben, “Collective neuro-evolution for evolving specialized sensor resolutions in a multi-rover task,” Evol. Intell., vol. 3, no. 1, pp. 13–29, Mar. 2010. doi: 10.1007/s12065-009-0034-z
|
| [61] |
M. A. Potter, L. Meeden, and A. C. Schultz, “Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists,” in Proc. 17th Int. Joint Conf. Artificial Intelligence, Seattle, USA, 2001, pp. 1337−1343.
|
| [62] |
H. J. Blumenthal and G. B. Parker, “Co-evolving team capture strategies for dissimilar robots,” in Proc. AAAI 2004 Fall Symp. on Artificial Multiagent Learning, Washington D.C., USA, 2004.
|
| [63] |
M. Waibel, L. Keller, and D. Floreano, “Genetic team composition and level of selection in the evolution of cooperation,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 648–660, Jun. 2009. doi: 10.1109/TEVC.2008.2011741
|
| [64] |
J. Gomes, P. Mariano, and A. L. Christensen, “Novelty-driven cooperative coevolution,” Evol. Comput., vol. 25, no. 2, pp. 275–307, Jun. 2017. doi: 10.1162/EVCO_a_00173
|
| [65] |
T. Eguchi, K. Hirasawa, J. Hu, and N. Ota, “A study of evolutionary multiagent models based on symbiosis,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 36, no. 1, pp. 179–193, Feb. 2006. doi: 10.1109/TSMCB.2005.856720
|
| [66] |
P. Lichocki, S. Wischmann, L. Keller, and D. Floreano, “Evolving team compositions by agent swapping,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 282–298, Apr. 2013. doi: 10.1109/TEVC.2012.2191292
|
| [67] |
J. Gomes, P. Mariano, and A. L. Christensen, “Dynamic team heterogeneity in cooperative coevolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 22, no. 6, pp. 934–948, Dec. 2018. doi: 10.1109/TEVC.2017.2779840
|
| [68] |
S. Khadka, S. Majumdar, S. Miret, S. McAleer, and K. Tumer, “Evolutionary reinforcement learning for sample-efficient multiagent coordination,” in Proc. 37th Int. Conf. on Machine Learning, Vienna, Austria 2020, pp. 617.
|
| [69] |
Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, and X. Wang, “Evolutionary population curriculum for scaling multi-agent reinforcement learning,” in Proc. 8th Int. Conf. on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
| [70] |
M. Crespi, A. Ferigo, L. L. Custode, and G. Iacca, “A population-based approach for multi-agent interpretable reinforcement learning,” Appl. Soft Comput., vol. 147, p. 110758, Nov. 2023. doi: 10.1016/j.asoc.2023.110758
|
| [71] |
H. Liu, Z. Li, K. Huang, R. Wang, G. Cheng, and T. Li, “Evolutionary reinforcement learning algorithm for large-scale multi-agent cooperation and confrontation applications,” J. Supercomput., vol. 80, no. 2, pp. 2319–2346, Jan. 2024. doi: 10.1007/s11227-023-05551-2
|
| [72] |
P. Li, J. Hao, H. Tang, Y. Zheng, and X. Fu, “RACE: Improve multi-agent reinforcement learning with representation asymmetry and collaborative evolution,” in Proc. 40th Int. Conf. Machine Learning, Honolulu, USA, 2023, pp. 806.
|
| [73] |
T. Wang, X. Peng, T. Wang, T. Liu, and D. Xu, “Automated design of action advising trigger conditions for multiagent reinforcement learning: A genetic programming-based approach,” Swarm Evol. Comput., vol. 85, p. 101475, Mar. 2024. doi: 10.1016/j.swevo.2024.101475
|
| [74] |
S. Kartik and C. S. R. Murthy, “Task allocation algorithms for maximizing reliability of distributed computing systems,” IEEE Trans. Comput., vol. 46, no. 6, pp. 719–724, Jun. 1997. doi: 10.1109/12.600888
|
| [75] |
Y. Xia, J. Zhu, and L. Zhu, “Dynamic role discovery and assignment in multi-agent task decomposition,” Complex Intell. Syst., vol. 9, no. 6, pp. 6211–6222, Dec. 2023. doi: 10.1007/s40747-023-01071-x
|
| [76] |
Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective workflow scheduling in cloud,” IEEE Trans. Parallel Distr. Syst., vol. 27, no. 5, pp. 1344–1357, May 2016. doi: 10.1109/TPDS.2015.2446459
|
| [77] |
C.-G. Wu, W. Li, L. Wang, and A. Y. Zomaya, “Hybrid evolutionary scheduling for energy-efficient fog-enhanced internet of things,” IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 641–653, Apr.-Jun. 2021. doi: 10.1109/TCC.2018.2889482
|
| [78] |
Y.-J. Zheng, Y.-C. Du, H.-F. Ling, W.-G. Sheng, and S.-Y. Chen, “Evolutionary collaborative human-UAV search for escaped criminals,” IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 217–231, Apr. 2020. doi: 10.1109/TEVC.2019.2925175
|
| [79] |
X. Tao and W. Song, “Profit-oriented task allocation for mobile crowdsensing with worker dynamics: Cooperative offline solution and predictive online solution,” IEEE Trans. Mobile Comput., vol. 20, no. 8, pp. 2637–2653, Aug. 2021. doi: 10.1109/TMC.2020.2983688
|
| [80] |
K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, Aug. 2013.
|
| [81] |
X. Gao, R. Liu, and A. Kaushik, “Hierarchical multi-agent optimization for resource allocation in cloud computing,” IEEE Trans. Parallel Distr. Syst., vol. 32, no. 3, pp. 692–707, Mar. 2021. doi: 10.1109/TPDS.2020.3030920
|
| [82] |
L. Wang, Z. Wang, S. Hu, and L. Liu, “Ant colony optimization for task allocation in multi-agent systems,” China Commun., vol. 10, no. 3, pp. 125–132, Mar. 2013. doi: 10.1109/CC.2013.6488841
|
| [83] |
M. Li, Z. Wang, K. Li, X. Liao, K. Hone, and X. Liu, “Task allocation on layered multiagent systems: When evolutionary many-objective optimization meets deep Q-learning,” IEEE Trans. Evol. Comput., vol. 25, no. 5, pp. 842–855, Oct. 2021. doi: 10.1109/TEVC.2021.3049131
|
| [84] |
Y. Guo, Z. Mi, Y. Yang, and M. S. Obaidat, “An energy sensitive computation offloading strategy in cloud robotic network based on GA,” IEEE Syst. J., vol. 13, no. 3, pp. 3513–3523, Sep. 2019. doi: 10.1109/JSYST.2018.2830395
|
| [85] |
C. Guerrero, I. Lera, B. Bermejo, and C. Juiz, “Multi-objective optimization for virtual machine allocation and replica placement in virtualized Hadoop,” IEEE Trans. Parallel Distr. Syst., vol. 29, no. 11, pp. 2568–2581, Nov. 2018. doi: 10.1109/TPDS.2018.2837743
|
| [86] |
T. Qian, X.-F. Liu, and Y. Fang, “A cooperative ant colony system for multiobjective multirobot task allocation with precedence constraints,” IEEE Trans. Evol. Comput., vol. 29, no. 3, pp. 734–748, Jun. 2025. doi: 10.1109/TEVC.2024.3364493
|
| [87] |
L.-L. Dai, Q.-K. Pan, Z.-H. Miao, P. N. Suganthan, and K.-Z. Gao, “Multi-objective multi-picking-robot task allocation: Mathematical model and discrete artificial bee colony algorithm,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 6, pp. 6061–6073, Jun. 2024. doi: 10.1109/TITS.2023.3336659
|
| [88] |
Y. Wu, M. Nie, X. Ma, Y. Guo, and X. Liu, “Co-evolutionary algorithm-based multi-unmanned aerial vehicle cooperative path planning,” Drones, vol. 7, no. 10, p. 606, Sep. 2023. doi: 10.3390/drones7100606
|
| [89] |
D. N. Das, R. Sewani, J. Wang, and M. K. Tiwari, “Synchronized truck and drone routing in package delivery logistics,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 9, pp. 5772–5782, Sep. 2021. doi: 10.1109/TITS.2020.2992549
|
| [90] |
Z. Jiang, T. Yang, L. Zhou, Y. Yuan, and H. Feng, “Maritime search and rescue networking based on multi-agent cooperative communication,” J. Commun. Inf. Netw., vol. 4, no. 1, pp. 42–53, Mar. 2019. doi: 10.23919/JCIN.2019.8916645
|
| [91] |
A. Seyyedabbasi and F. Kiani, “MAP-ACO: An efficient protocol for multi-agent pathfinding in real-time WSN and decentralized IoT systems,” Microprocess. Microsyst., vol. 79, p. 103325, Nov. 2020. doi: 10.1016/j.micpro.2020.103325
|
| [92] |
E. García, J. R. Villar, Q. Tan, J. Sedano, and C. Chira, “An efficient multi-robot path planning solution using a* and coevolutionary algorithms,” Integr. Comput.-Aided Eng., vol. 30, no. 1, pp. 41–52, Feb. 2023.
|
| [93] |
M. Kiadi, E. García, J. R. Villar, and Q. Tan, “A*-based co-evolutionary approach for multi-robot path planning with collision avoidance,” Cybern. Syst., vol. 54, no. 3, pp. 339–354, 2023. doi: 10.1080/01969722.2022.2030009
|
| [94] |
Y. F. Yiu and R. Mahapatra, “Multi-agent pathfinding with hierarchical evolutionary hueristic A,” in Proc. IEEE 3rd Int. Conf. Artificial Intelligence and Knowledge Engineering, Laguna Hills, USA, 2020, pp. 9−16.
|
| [95] |
T. M. Cabreira, M. S. de Aguiar, and G. P. Dimuro, “An extended evolutionary learning approach for multiple robot path planning in a multi-agent environment,” in Proc. IEEE Congr. Evolutionary Computation, Cancun, Mexico, 2013, pp. 3363−3370.
|
| [96] |
X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-UAV networks: Deployment and movement design,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 8036–8049, Aug. 2019. doi: 10.1109/TVT.2019.2922849
|
| [97] |
X. Yu, W.-N. Chen, X.-M. Hu, T. Gu, H. Yuan, Y. Zhou, and J. Zhang, “Path planning in multiple-AUV systems for difficult target traveling missions: A hybrid metaheuristic approach,” IEEE Trans. Cognit. Dev. Syst., vol. 12, no. 3, pp. 561–574, Sep. 2020. doi: 10.1109/TCDS.2019.2944945
|
| [98] |
X.-C. Liao, W.-N. Chen, Y.-H. Jia, and W.-J. Qiu, “Towards scalable dynamic traffic assignment with streaming agents: A decentralized control approach using genetic programming,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 1, pp. 942–955, Feb. 2024. doi: 10.1109/TETCI.2023.3296671
|
| [99] |
X.-C. Liao, Y.-H. Jia, X.-M. Hu, and W.-N. Chen, “Uncertain commuters assignment through genetic programming hyper-heuristic,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 2, pp. 2606–2619, Apr. 2024. doi: 10.1109/TCSS.2023.3265727
|
| [100] |
F. Ho and S. Nakadai, “Preference-based multi-objective multi-agent path finding,” Auton. Agent. Multi-Agent Syst., vol. 37, no. 1, p. 12, Jun. 2023. doi: 10.1007/s10458-022-09593-3
|
| [101] |
R. Rajabioun, E. Atashpaz-Gargari, and C. Lucas, “Colonial competitive algorithm as a tool for Nash equilibrium point achievement,” in Proc. Int. Conf. Computational Science and Its Applications, Perugia, Italy, 2008, pp. 680−695.
|
| [102] |
X. Wang, S. Lv, and J. Quan, “The evolution of cooperation in the Prisoner’s Dilemma and the Snowdrift game based on Particle Swarm Optimization,” Phys. A: Stat. Mech. Appl., vol. 482, pp. 286–295, Sep. 2017. doi: 10.1016/j.physa.2017.04.080
|
| [103] |
C. L. Li, Y. P. Liu, Y. L. Luo, and M. Zhou, “Collaborative content dissemination based on game theory in multimedia cloud,” Knowl.-Based Syst., vol. 124, pp. 1–15, May 2017. doi: 10.1016/j.knosys.2017.02.026
|
| [104] |
N. Neshat and M. R. Amin-Naseri, “Cleaner power generation through market-driven generation expansion planning: An agent-based hybrid framework of game theory and Particle Swarm Optimization,” J. Clean. Prod., vol. 105, pp. 206–217, Oct. 2015. doi: 10.1016/j.jclepro.2014.10.083
|
| [105] |
S. M. Moghddas-Tafreshi, H. A. Shayanfar, A. Saliminia Lahiji, A. Rabiee, and J. Aghaei, “Generation expansion planning in pool market: A hybrid modified game theory and particle swarm optimization,” Energy Convers. Manag., vol. 52, no. 2, pp. 1512–1519, Feb. 2011. doi: 10.1016/j.enconman.2010.10.019
|
| [106] |
P. Kontogiorgos, E. Sarri, M. N. Vrahatis, and G. P. Papavassilopoulos, “An energy market stackelberg game solved with particle swarm optimization,” in Proc. 6th Conf. Numerical Analysis, Chania, Greece, 2014, pp. 161−166.
|
| [107] |
Z.-X. Zhang, W.-N. Chen, W. Shi, S.-W. Jeon, and J. Zhang, “An individual evolutionary game model guided by global evolutionary optimization for vehicle energy station distribution,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 1, pp. 1289–1301, Feb. 2024. doi: 10.1109/TCSS.2023.3237085
|
| [108] |
W. Ai, W. Chen, and J. Xie, “A general framework for population-based distributed optimization over networks,” Inf. Sci., pp. 418–419, Dec. 2017.
|
| [109] |
T.-Y. Chen, W.-N. Chen, X.-Q. Guo, Y.-J. Gong, and J. Zhang, “A multiagent co-evolutionary algorithm with penalty-based objective for network-based distributed optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 54, no. 7, pp. 4358–4370, Jul. 2024. doi: 10.1109/TSMC.2024.3380389
|
| [110] |
X. He, Z. Zheng, C. Chen, Y. Zhou, C. Luo, and Q. Lin, “Distributed evolution strategies for black-box stochastic optimization,” IEEE Trans. Parallel Distr. Syst., vol. 33, no. 12, pp. 3718–3731, Dec. 2022. doi: 10.1109/TPDS.2022.3168873
|
| [111] |
N. Hamani, J.-P. Jamont, M. Occello, C.-B. Ben-Yelles, A. Lagreze, and M. Koudil, “A multi-cooperative-based approach to manage communication in wireless instrumentation systems,” IEEE Syst. J., vol. 12, no. 3, pp. 2174–2185, Sep. 2018. doi: 10.1109/JSYST.2017.2721220
|
| [112] |
R. Patel, E. Rudnick-Cohen, S. Azarm, M. Otte, H. Xu, and J. W. Herrmann, “Decentralized task allocation in multi-agent systems using a decentralized genetic algorithm,” in Proc. IEEE Int. Conf. Robotics and Automation, Paris, France, 2020, pp. 3770−3776.
|
| [113] |
H.-J. Choi, Y.-D. Kim, and H.-J. Kim, “Genetic algorithm based decentralized task assignment for multiple unmanned aerial vehicles in dynamic environments,” Int. J. Aeronaut. Space Sci., vol. 12, no. 2, pp. 163–174, Jun. 2011. doi: 10.5139/IJASS.2011.12.2.163
|
| [114] |
J. Xu, Y. Jin, and W. Du, “A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization,” Complex Intell. Syst., vol. 7, no. 6, pp. 3093–3109, Dec. 2021. doi: 10.1007/s40747-021-00506-7
|
| [115] |
J. Xu, Y. Jin, W. Du, and S. Gu, “A federated data-driven evolutionary algorithm,” Knowl.-Based Syst., vol. 233, p. 107532, Dec. 2021. doi: 10.1016/j.knosys.2021.107532
|
| [116] |
F.-F. Wei, W.-N. Chen, X.-Q. Guo, B. Zhao, S.-W. Jeon, and J. Zhang, “CrowdEC: Crowdsourcing-based evolutionary computation for distributed optimization,” IEEE Trans. Serv. Comput., vol. 17, no. 6, pp. 3286–3299, Nov.-Dec. 2024. doi: 10.1109/TSC.2024.3433487
|
| [117] |
K. Utkarsh, A. Trivedi, D. Srinivasan, and T. Reindl, “A consensus-based distributed computational intelligence technique for real-time optimal control in smart distribution grids,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 1, no. 1, pp. 51–60, Feb. 2017. doi: 10.1109/TETCI.2016.2635130
|
| [118] |
N. Gionfra, G. Sandou, H. Siguerdidjane, D. Faille, and P. Loevenbruck, “Wind farm distributed PSO-based control for constrained power generation maximization,” Renew. Energy, vol. 133, pp. 103–117, Apr. 2019. doi: 10.1016/j.renene.2018.09.084
|
| [119] |
X. Wang, J.-J. Ma, S. Wang, and D.-W. Bi, “Distributed particle swarm optimization and simulated annealing for energy-efficient coverage in wireless sensor networks,” Sensors, vol. 7, no. 5, pp. 628–648, May 2007. doi: 10.3390/s7050628
|
| [120] |
Y. Wakasa and S. Nakaya, “Distributed particle swarm optimization using an average consensus algorithm,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 2661−2666.
|
| [121] |
S. Ilie and C. Bǎdicǎ, “Multi-agent approach to distributed ant colony optimization,” Sci. Comput. Program., vol. 78, no. 6, pp. 762–774, Jun. 2013. doi: 10.1016/j.scico.2011.09.001
|
| [122] |
H. Shokrani and S. Jabbehdari, “A survey of ant-based routing algorithms for mobile ad-hoc networks,” in Proc. Int. Conf. Signal Processing Systems, Singapore, Singapore, 2009, pp. 323−329.
|
| [123] |
B. Wang and Z. He, “Distributed optimization over wireless sensor networks using swarm intelligence,” in Proc. IEEE Int. Symp. Circuits and Systems, New Orleans, USA, 2007, pp. 2502−2505.
|
| [124] |
M. Choudhury, S. Mahmud, and M. Khan, “A particle swarm based algorithm for functional distributed constraint optimization problems,” in Proc. 34th AAAI Conf. Artificial Intelligence, New York, USA, 2020, pp. 7111−7118.
|
| [125] |
P. Bouvry, F. Arbab, and F. Seredynski, “Distributed evolutionary optimization, in Manifold: Rosenbrock’s function case study,” Inf. Sci., vol. 122, no. 2−4, pp. 141–159, Feb. 2000. doi: 10.1016/S0020-0255(99)00116-4
|
| [126] |
M. K. Jalloul and M. A. Al-Alaoui, “A distributed Particle Swarm Optimization algorithm for block motion estimation using the strategies of diffusion adaptation,” in Proc. Int. Symp. Signals, Circuits and Systems, Iasi, Romania, 2015, pp. 1−4.
|
| [127] |
T.-Y. Chen, W.-N. Chen, F.-F. Wei, X.-M. Hu, and J. Zhang, “Multiagent swarm optimization with adaptive internal and external learning for complex consensus-based distributed optimization,” IEEE Trans. Evol. Comput., vol. 29, no. 4, pp. 906–920, Aug. 2025. doi: 10.1109/TEVC.2024.3380436
|
| [128] |
W.-J. Qiu, X.-M. Hu, A. Song, J. Zhang, and W.-N. Chen, “A scalable parallel coevolutionary algorithm with overlapping cooperation for large-scale network-based combinatorial optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 54, no. 8, pp. 4806–4818, Aug. 2024. doi: 10.1109/TSMC.2024.3389751
|
| [129] |
H. Zhang and Q. Hui, “Multiagent coordination optimization: A control-theoretic perspective of swarm intelligence algorithms,” in Proc. IEEE Congr. Evolutionary Computation, Cancun, Mexico, 2013, pp. 3339−3346.
|
| [130] |
X. Wang, D. Yang, and S. Chen, “Particle swarm optimization based leader-follower cooperative control in multi-agent systems,” Appl. Soft Comput., vol. 151, p. 111130, Jan. 2024. doi: 10.1016/j.asoc.2023.111130
|
| [131] |
W. Jatmiko, K. Sekiyama, and T. Fukuda, “A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: Theory, simulation and measurement,” IEEE Comput. Intell. Mag., vol. 2, no. 2, pp. 37–51, May 2007. doi: 10.1109/MCI.2007.353419
|
| [132] |
Q. Lu, S.-R. Liu, and X.-N. Qiu, “A distributed architecture with two layers for odor source localization in multi-robot systems,” in Proc. IEEE Congr. Evolutionary Computation, Barcelona, Spain, 2010, pp. 1−7.
|
| [133] |
A. Sinha, R. Kumar, R. Kaur, and A. P. Bhondekar, “Consensus-based odor source localization by multiagent systems,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4450–4459, Dec. 2019. doi: 10.1109/TCYB.2018.2869224
|
| [134] |
H. Zhang and Q. Hui, “Parallel multiagent coordination optimization algorithm: Implementation, evaluation, and applications,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 984–995, Apr. 2017. doi: 10.1109/TASE.2016.2544749
|
| [135] |
A. Belkadi, H. Abaunza, L. Ciarletta, P. Castillo, and D. Theilliol, “Design and implementation of distributed path planning algorithm for a fleet of UAVs,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 6, pp. 2647–2657, Dec. 2019. doi: 10.1109/TAES.2019.2906437
|
| [136] |
Y. Yu, H. Wang, S. Liu, L. Guo, P. L. Yeoh, B. Vucetic, and Y. Li, “Distributed multi-agent target tracking: A Nash-combined adaptive differential evolution method for UAV systems,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8122–8133, Aug. 2021. doi: 10.1109/TVT.2021.3091575
|
| [137] |
Q. Hui and H. Zhang, “Optimal balanced coordinated network resource allocation using swarm optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 45, no. 5, pp. 770–787, May 2015. doi: 10.1109/TSMC.2014.2371871
|
| [138] |
A. Belkadi, L. Ciarletta, and D. Theilliol, “Particle swarm optimization method for the control of a fleet of Unmanned Aerial Vehicles,” J. Phys. Conf. Ser., vol. 659, p. 012015, Nov. 2015. doi: 10.1088/1742-6596/659/1/012015
|
| [139] |
A. Belkadi, L. Ciarletta, and D. Theilliol, “UAVs fleet control design using distributed particle swarm optimization: A leaderless approach,” in Proc. Int. Conf. Unmanned Aircraft Systems, Arlington, USA, 2016, pp. 364−371.
|
| [140] |
Q. Luo and H. Duan, “Distributed UAV flocking control based on homing pigeon hierarchical strategies,” Aerosp. Sci. Technol., vol. 70, pp. 257–264, Nov. 2017. doi: 10.1016/j.ast.2017.08.010
|
| [141] |
A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615, Mar. 2015. doi: 10.1109/TAC.2014.2364096
|
| [142] |
H. Li, C. Huang, Z. Wang, G. Chen, and H. G. A. Umar, “Computation-efficient distributed algorithm for convex optimization over time-varying networks with limited bandwidth communication,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp. 140–151, Jan. 2020.
|
| [143] |
D. Wang, J. Yin, and W. Wang, “Distributed randomized gradient-free optimization protocol of multiagent systems over weight-unbalanced digraphs,” IEEE Trans. Cybern., vol. 51, no. 1, pp. 473–482, Jan. 2021. doi: 10.1109/TCYB.2018.2890140
|
| [144] |
H. Van Nguyen, B.-N. Vo, B.-T. Vo, H. Rezatofighi, and D. C. Ranasinghe, “Multi-objective multi-agent planning for discovering and tracking multiple mobile objects,” IEEE Trans. Signal Process., vol. 72, pp. 3669–3685, Jul. 2024. doi: 10.1109/TSP.2024.3423755
|
| [145] |
Z. Dai, B. K. H. Low, and P. Jaillet, “Federated Bayesian optimization via thompson sampling,” in Proc. 34th Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, pp. 9687−9699.
|
| [146] |
B. Zhao, W.-N. Chen, F.-F. Wei, X. Liu, Q. Pei, and J. Zhang, “PEGA: A privacy-preserving genetic algorithm for combinatorial optimization,” IEEE Trans. Cybern., vol. 54, no. 6, pp. 3638–3651, Jun. 2024. doi: 10.1109/TCYB.2023.3346863
|
| [147] |
B. Zhao, X. Liu, A. Song, W.-N. Chen, K -K. Lai, J. Zhang, and R. H. Deng, “PriMPSO: A privacy-preserving multiagent particle swarm optimization algorithm,” IEEE Trans. Cybern., vol. 53, no. 11, pp. 7136–7149, Nov. 2023. doi: 10.1109/TCYB.2022.3224169
|
| [148] |
B. Zhao, W.-N. Chen, X. Li, X. Liu, Q. Pei, and J. Zhang, “When evolutionary computation meets privacy,” IEEE Comput. Intell. Mag., vol. 19, no. 1, pp. 66–74, Feb. 2024. doi: 10.1109/MCI.2023.3327892
|
| [149] |
Y. Hou, Y.-S. Ong, L. Feng, and J. M. Zurada, “An evolutionary transfer reinforcement learning framework for multiagent systems,” IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 601–615, Aug. 2017. doi: 10.1109/TEVC.2017.2664665
|
| [150] |
Y. Zeng, X. Chen, Y.-S. Ong, J. Tang, and Y. Xiang, “Structured memetic automation for online human-like social behavior learning,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 102–115, Feb. 2017. doi: 10.1109/TEVC.2016.2577593
|
| [151] |
S. Li, W. Gong, L. Wang, and Q. Gu, “Evolutionary multitasking via reinforcement learning,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 1, pp. 762–775, Feb. 2024. doi: 10.1109/TETCI.2023.3281876
|
| [152] |
Y. Hou, M. Sun, Y. Zeng, Y.-S. Ong, Y. Jin, H. Ge, and Q. Zhang, “A multiagent cooperative learning system with evolution of social roles,” IEEE Trans. Evol. Comput., vol. 28, no. 2, pp. 531–543, Apr. 2024. doi: 10.1109/TEVC.2023.3268076
|
| [153] |
C.-M. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang, J. Fu, and Z. Liu, “ChatEval: Towards better LLM-based evaluators through multi-agent debate,” in Proc. 12th Int. Conf. Learning Representations, Vienna, Austria, 2024.
|
| [154] |
Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger, and C. Wang, “AutoGen: Enabling next-gen LLM applications via multi-agent conversation,” arXiv preprint arXiv: 2308.08155, 2023.
|
| [155] |
Y. Talebirad and A. Nadiri, “Multi-agent collaboration: Harnessing the power of intelligent LLM agents,” arXiv preprint arXiv: 2306.03314, 2023.
|