IEEE/CAA Journal of Automatica Sinica
Citation: | R. Liu, A. Mangini, and M. Fanti, “Synthesis of optimal stealthy attacks against diagnosability in labeled Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1661–1672, Aug. 2025. doi: 10.1109/JAS.2025.125156 |
[1] |
W. Duo, M. C. Zhou, and A. Abusorrah, “A survey of cyber attacks on cyber physical systems: Recent advances and challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 784–800, May 2022. doi: 10.1109/JAS.2022.105548
|
[2] |
D. Zhang, Q.-G. Wang, G. Feng, Y. Shi, and A. V. Vasilakos, “A survey on attack detection, estimation and control of industrial cyber-physical systems,” ISA Trans., vol. 116, pp. 1–16, Oct. 2021. doi: 10.1016/j.isatra.2021.01.036
|
[3] |
J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep learning based attack detection for cyber-physical system cybersecurity: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 377–391, Mar. 2022. doi: 10.1109/JAS.2021.1004261
|
[4] |
L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection and mitigation of classes of attacks in supervisory control systems,” Automatica, vol. 97, pp. 121–133, Nov. 2018. doi: 10.1016/j.automatica.2018.07.017
|
[5] |
R. Fritz and P. Zhang, “Detection and localization of stealthy cyberattacks in cyber-physical discrete event systems,” IEEE Trans. Autom. Control, vol. 68, no. 12, pp. 7895–7902, Dec. 2023. doi: 10.1109/TAC.2023.3253462
|
[6] |
C. Gao, C. Seatzu, Z. Li, and A. Giua, “Multiple attacks detection on discrete event systems,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, Bari, Italy, 2019, pp. 2352−2357.
|
[7] |
F. Lin, S. Lafortune, and C. Wang, “Diagnosability and attack detection for discrete event systems under sensor attacks,” Discrete Event Dyn. Syst., vol. 34, no. 3, pp. 465–495, Jul. 2024. doi: 10.1007/s10626-024-00401-6
|
[8] |
L. Lin and R. Su, “Synthesis of covert actuator and sensor attackers,” Automatica, vol. 130, p. 109714, Aug. 2021. doi: 10.1016/j.automatica.2021.109714
|
[9] |
R. Tai, L. Lin, and R. Su, “Synthesis of optimal covert sensor-actuator attackers for discrete-event systems,” Automatica, vol. 151, p. 110910, May 2023. doi: 10.1016/j.automatica.2023.110910
|
[10] |
R. Tai, L. Lin, Y. Zhu, and R. Su, “Synthesis of the supremal covert attacker against unknown supervisors by using observations,” IEEE Trans. Autom. Control, vol. 68, no. 6, pp. 3453–3468, Jun. 2023. doi: 10.1109/TAC.2022.3191393
|
[11] |
R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis of sensor deception attacks at the supervisory layer of cyber-physical systems,” Automatica, vol. 121, p. 109172, Nov. 2020. doi: 10.1016/j.automatica.2020.109172
|
[12] |
J. Yao, S. Li, and X. Yin, “Sensor deception attacks against security in supervisory control systems,” Automatica, vol. 159, p. 111330, Jan. 2024. doi: 10.1016/j.automatica.2023.111330
|
[13] |
Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “Selection of a stealthy and harmful attack function in discrete event systems,” Sci. Rep., vol. 12, no. 1, p. 16302, Sept. 2022. doi: 10.1038/s41598-022-19737-w
|
[14] |
Y. Li, C. N. Hadjicostis, N. Wu, and Z. Li, “Error-and tamper-tolerant state estimation for discrete event systems under cost constraints,” IEEE Trans. Autom. Control, vol. 68, no. 11, pp. 6743–6750, Nov. 2023. doi: 10.1109/TAC.2023.3239590
|
[15] |
Y. Yao, Y. Tong, and H. Lan, “Initial-state estimation of multi-channel networked discrete event systems,” IEEE Control Syst. Lett., vol. 4, no. 4, pp. 1024–1029, Oct. 2020. doi: 10.1109/LCSYS.2020.2998610
|
[16] |
F. Lin, W. Wang, L. Han, and B. Shen, “State estimation of multichannel networked discrete event systems,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, pp. 53–63, Mar. 2020. doi: 10.1109/TCNS.2019.2915024
|
[17] |
S. Zheng, S. Shu, and F. Lin, “Modeling and control of discrete-event systems under joint sensor-actuator cyberattacks,” IEEE Trans. Control Netw. Syst., vol. 11, no. 2, pp. 782–794, Jun. 2024. doi: 10.1109/TCNS.2023.3312249
|
[18] |
Z. He, N. Wu, and Z. Li, “Estimation and prevention of actuator enablement attacks in discrete-event systems under supervisory control,” IEEE Trans. Autom. Control, vol. 69, no. 9, pp. 5963–5978, Sept. 2024. doi: 10.1109/TAC.2024.3367656
|
[19] |
R. Meira-Góes, H. Marchand, and S. Lafortune, “Dealing with sensor’ and actuator deception attacks in supervisory control,” Automatica, vol. 147, p. 110736, Jan. 2023. doi: 10.1016/j.automatica.2022.110736
|
[20] |
R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations,” Automatica, vol. 94, pp. 35–44, Aug. 2018. doi: 10.1016/j.automatica.2018.04.006
|
[21] |
M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of discrete-event systems under attacks,” Dyn. Games Appl., vol. 9, pp. 965–983, Dec. 2019. doi: 10.1007/s13235-018-0285-3
|
[22] |
R. Meira-Góes, S. Lafortune, and H. Marchand, “Synthesis of supervisors robust against sensor deception attacks,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4990–4997, Oct. 2021. doi: 10.1109/TAC.2021.3051459
|
[23] |
M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans. Autom. Control, vol. 40, no. 9, pp. 1555–1575, Sept. 1995. doi: 10.1109/9.412626
|
[24] |
M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis, “Failure diagnosis using discrete-event models,” IEEE Trans. Control Syst. Technol., vol. 4, no. 2, pp. 105–124, Mar. 1996. doi: 10.1109/87.486338
|
[25] |
S. H. Zad, R. H. Kwong, and W. M. Wonham, “Fault diagnosis in discrete-event systems: Framework and model reduction,” IEEE Trans. Autom. Control, vol. 48, no. 7, pp. 1199–1212, Jul. 2003. doi: 10.1109/TAC.2003.814099
|
[26] |
F. Basile, P. Chiacchio, and G. De Tommasi, “On κ-diagnosability of Petri nets via integer linear programming,” Automatica, vol. 48, no. 9, pp. 2047–2058, Sept. 2012. doi: 10.1016/j.automatica.2012.06.039
|
[27] |
M. P. Cabasino, A. Giua, and C. Seatzu, “Diagnosability of discrete-event systems using labeled Petri nets,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 1, pp. 144–153, Jan. 2014. doi: 10.1109/TASE.2013.2289360
|
[28] |
G. Zhu, Z. Li, N. Wu, and A. Al-Ahamari, “Fault identification of discrete event systems modeled by Petri nets with unobservable transitions,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 49, no. 2, pp. 333–345, Feb. 2019. doi: 10.1109/TSMC.2017.2762823
|
[29] |
N. Ran, A. Giua, and C. Seatzu, “Enforcement of diagnosability in labeled Petri nets via optimal sensor selection,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2997–3004, Jul. 2019. doi: 10.1109/TAC.2018.2874020
|
[30] |
S. Hu, Z. Li, and R. Wisniewski, “Optimal sensor selection for diagnosability enforcement in labeled Petri nets,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 54, no. 5, pp. 2965–2977, May 2024. doi: 10.1109/TSMC.2024.3351740
|
[31] |
M. P. Cabasino, S. Lafortune, and C. Seatzu, “Optimal sensor selection for ensuring diagnosability in labeled Petri nets,” Automatica, vol. 49, no. 8, pp. 2373–2383, Aug. 2013. doi: 10.1016/j.automatica.2013.04.041
|
[32] |
Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for enforcement of opacity security properties,” Automatica, vol. 50, no. 5, pp. 1336–1348, May 2014. doi: 10.1016/j.automatica.2014.02.038
|
[33] |
Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement using nondeterministic publicly known edit functions,” IEEE Trans. Automat. Control, vol. 64, no. 10, pp. 4369–4376, Oct. 2019. doi: 10.1109/TAC.2019.2897553
|
[34] |
X. Li, C. N. Hadjicostis, and Z. Li, “Opacity enforcement in discrete event systems using extended insertion functions under inserted language constraints,” IEEE Trans. Autom. Control, vol. 68, no. 11, pp. 6797–6803, Nov. 2023. doi: 10.1109/TAC.2023.3239433
|
[35] |
W. Duan, R. Liu, M. P. Fanti, C. N. Hadjicostis, and Z. Li, “Edit mechanism synthesis for opacity enforcement under uncertain observations,” IEEE Control Syst. Lett., vol. 7, pp. 2041–2046, Jun. 2023. doi: 10.1109/LCSYS.2023.3284340
|
[36] |
L. K. Carvalho, M. V. Moreira, J. C. Basilio, and S. Lafortune, “Robust diagnosis of discrete-event systems against permanent loss of observations,” Automatica, vol. 49, no. 1, pp. 223–231, Jan. 2013. doi: 10.1016/j.automatica.2012.09.017
|
[37] |
W. Dong, X. Yin, and S. Li, “A uniform framework for diagnosis of discrete-event systems with unreliable sensors using linear temporal logic,” IEEE Trans. Autom. Control, vol. 69, no. 1, pp. 145–160, Jan. 2024. doi: 10.1109/TAC.2023.3266021
|
[38] |
Y. Li, C. N. Hadjicostis, N. Wu, and Z. Li, “Tamper-tolerant diagnosability analysis and tampering detectability in discrete event systems under cost constraints,” Automatica, vol. 171, p. 111971, Jan. 2025. doi: 10.1016/j.automatica.2024.111971
|
[39] |
N. F. Shamloo, E. De Santis, and M. D. Di Benedetto, “Security and diagnosability of finite state machines under cyber-attacks,” IEEE Trans. Autom. Sci. Eng., vol. 22, pp. 5108−5116, Sept. 2024.
|
[40] |
T. Kang, C. Seatzu, Z. Li, and A. Giua, “Fault diagnosis of discrete event systems under attack,” in Proc. 62nd IEEE Conf. Decision and Control, Singapore, Singapore, 2023, pp. 7923−7929.
|
[41] |
V. de Souza Lima Oliveira, F. G. Cabral, and M. V. Moreira, “K-loss robust codiagnosability of Discrete-Event Systems,” Automatica, vol. 140, p. 110222, Jun. 2022. doi: 10.1016/j.automatica.2022.110222
|
[42] |
R. Liu, A. M. Mangini, and M. P. Fanti, “K-corruption intermittent attacks for violating the diagnosability,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 1847–1852, Jan. 2023. doi: 10.1016/j.ifacol.2023.10.1900
|
[43] |
M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete event systems using Petri nets with unobservable transitions,” Automatica, vol. 46, no. 9, pp. 1531–1539, Sept. 2010. doi: 10.1016/j.automatica.2010.06.013
|
[44] |
Z. Ma, Y. Tong, Z. Li, and A. Giua, “Basis marking representation of Petri net reachability spaces and its application to the reachability problem,” IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1078–1093, Mar. 2017. doi: 10.1109/TAC.2016.2574120
|
[45] |
Z. Ma, G. Zhu, and Z. Li, “Marking estimation in Petri nets using hierarchical basis reachability graphs,” IEEE Trans. Autom. Control, vol. 66, no. 2, pp. 810–817, Feb. 2021. doi: 10.1109/TAC.2020.2983088
|
[46] |
I. Saadaoui, Z. Li, and N. Wu, “Current-state opacity modelling and verification in partially observed Petri nets,” Automatica, vol. 116, p. 108907, Jun. 2020. doi: 10.1016/j.automatica.2020.108907
|
[47] |
X. Cong, M. P. Fanti, A. M. Mangini, and Z. Li, “Critical observability verification and enforcement of labeled Petri nets by using basis markings,” IEEE Trans. Autom. Control, vol. 68, no. 12, pp. 8158–8164, Dec. 2023. doi: 10.1109/TAC.2023.3292747
|
[48] |
T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989. doi: 10.1109/5.24143
|
[49] |
C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. 2nd ed. New York, USA: Springer, 2008.
|