A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 8
Aug.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
J. Wu, M. Lu, F. Deng, and J. Chen, “An emulation approach to semi-global robust output regulation for a class of nonlinear uncertain systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1713–1723, Aug. 2025. doi: 10.1109/JAS.2024.125085
Citation: J. Wu, M. Lu, F. Deng, and J. Chen, “An emulation approach to semi-global robust output regulation for a class of nonlinear uncertain systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1713–1723, Aug. 2025. doi: 10.1109/JAS.2024.125085

An Emulation Approach to Semi-Global Robust Output Regulation for a Class of Nonlinear Uncertain Systems

doi: 10.1109/JAS.2024.125085
Funds:  This work was supported in part by the National Science and Technology Major Project (2021ZD0112600), the National Natural Science Foundation of China (62373058), Beijing Natural Science Foundation (L233003), the National Science Fund for Distinguished Young Scholars of China (62025301), and the Basic Science Center Programs of National Nature Science Foundation of China (62088101)
More Information
  • In this paper, we investigate the semi-global robust output regulation problem of a class of nonlinear networked control systems. By the emulation approach, we propose a class of sampled-data output feedback control laws to solve this problem. In particular, we first develop a general sampled-data dynamic output feedback control law and characterize the closed-loop system by a hybrid system. Then, we design the internal model based on the sampled error output of the system. Based on the internal model principle, we convert the semi-global robust output regulation problem into a semi-global robust stabilization problem of an augmented hybrid system composed of the internal model and the original system. By proposing the sampled error output feedback control law and by means of Lyapunov analysis, we obtain the maximum allowable transmission interval for sampling and show that semi-global robust stabilization of the augmented hybrid system can be achieved by the proposed sampled-data control law and thus leading to the solution of the semi-global robust output regulation problem. Finally, we apply the proposed control approach to two practical applications to verify the effectiveness of the proposed control approach.

     

  • loading
  • [1]
    X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911651
    [2]
    G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked control systems,” IEEE Trans. Control Syst. Technol., vol. 10, no. 3, pp. 438–446, May 2002. doi: 10.1109/87.998034
    [3]
    Q.-K. Li, X. Li, J. Wang, and S. Du, “Stabilization of networked control systems using a mixed-mode based switched delay system method,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1089–1098, Nov. 2018. doi: 10.1109/JAS.2018.7511228
    [4]
    D. Nešić and A. R. Teel, “Input-output stability properties of networked control systems,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1650–1667, Oct. 2004. doi: 10.1109/TAC.2004.835360
    [5]
    G. C. Walsh, O. Beldiman, and L. G. Bushnell, “Asymptotic behavior of nonlinear networked control systems,” IEEE Trans. Autom. Control, vol. 46, no. 7, pp. 1093–1097, Jul. 2001. doi: 10.1109/9.935062
    [6]
    D. Nešić and A. R. Teel, “Input-to-state stability of networked control systems,” Automatica, vol. 40, no. 12, pp. 2121–2128, Dec. 2004.
    [7]
    R. Postoyan and D. Nešić, “A framework for the observer design for networked control systems,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1309–1314, May 2012. doi: 10.1109/TAC.2011.2181794
    [8]
    W. Wang and H.-B. Zeng, “A looped functional method to design state feedback controllers for Lurie networked control systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1093–1095, Apr. 2023. doi: 10.1109/JAS.2023.123141
    [9]
    D. Carnevale, A. R. Teel, and D. Nešić, “A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 892–897, May 2007. doi: 10.1109/TAC.2007.895913
    [10]
    D. Astolfi, G. Casadei, and R. Postoyan, “Emulation-based semiglobal output regulation of minimum phase nonlinear systems with sampled measurements,” in Proc. European Control Conf., Limassol, Cyprus, 2018, pp. 1931−1936.
    [11]
    D. Nešić, “Networked control systems: An emulation approach to controller design,” IFAC Proc. Vol., vol. 40, no. 12, pp. 569–576, 2007. doi: 10.3182/20070822-3-ZA-2920.00094
    [12]
    K. Chen, D. Xu, and Y. Su, “Ripple-free sampled-data output regulation: Stability analysis and sampling period estimation,” in Proc. Chinese Control Conf., Guangzhou, China, 2019, pp. 840−845.
    [13]
    L. Wang, L. Marconi, and C. M. Kellett, “Robust implementable regulator design of general linear systems,” arXiv preprint arXiv: 2102.13413, 2021.
    [14]
    Y. Deng, V. Léchappé, C. Zhang, E. Moulay, D. Du, F. Plestan, and Q.-L. Han, “Designing discrete predictor-based controllers for networked control systems with time-varying delays: Application to a visual servo inverted pendulum system,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1763–1777, Oct. 2022. doi: 10.1109/JAS.2021.1004249
    [15]
    H. Yu and T. Chen, “Networked control for nonlinear plants subject to updating disorder,” IEEE Trans. Autom. Control, vol. 69, no. 8, pp. 4926–4941, Aug. 2024. doi: 10.1109/TAC.2023.3340981
    [16]
    W. Ren, W. Wang, Z.-R. Pan, X.-M. Sun, A. R. Teel, and D. Nešić, “Emulation-based stabilization for networked control systems with stochastic channels,” Automatica, vol. 163, p. 111594, May 2024. doi: 10.1016/j.automatica.2024.111594
    [17]
    X. Jiang, H. Yan, B. Li, S. Zheng, T. Huang, and P. Shi, “Optimal tracking of networked control systems over the fading channel with packet loss,” IEEE Trans. Autom. Control, vol. 69, no. 4, pp. 2652–2659, Apr. 2024. doi: 10.1109/TAC.2023.3343593
    [18]
    M. Lu and J. Huang, “Robust output regulation problem for linear time-delay systems,” Int. J. Control, vol. 88, no. 6, pp. 1236–1245, Jan. 2015. doi: 10.1080/00207179.2014.1002111
    [19]
    M. Lu and L. Liu, “Quantized output regulation of minimum-phase linear uncertain systems,” Int. J. Robust Nonlinear Control, vol. 30, no. 17, pp. 7074–7088, Sept. 2020. doi: 10.1002/rnc.5157
    [20]
    W. Liu and J. Huang, “Sampled-data semi-global robust output regulation for a class of nonlinear systems,” J. Syst. Sci. Complexity, vol. 34, no. 5, pp. 1743–1765, Oct. 2021. doi: 10.1007/s11424-021-1165-2
    [21]
    Y. Jiang and J. Dai, “Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 568–574, Mar. 2020. doi: 10.1109/JAS.2020.1003060
    [22]
    J. Huang and Z. Chen, “A general framework for tackling the output regulation problem,” IEEE Trans. Autom. Control, vol. 49, no. 12, pp. 2203–2218, Dec. 2004. doi: 10.1109/TAC.2004.839236
    [23]
    A. Odekunle, W. Gao, and Y. Wang, “Data-driven global robust optimal output regulation of uncertain partially linear systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1108–1115, Sept. 2019. doi: 10.1109/JAS.2019.19117678
    [24]
    B. A. Francis, “The linear multivariable regulator problem,” SIAM J. Control Optim., vol. 15, no. 3, pp. 486–505, May 1977. doi: 10.1137/0315033
    [25]
    B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, no. 5, pp. 457–465, Sept. 1976. doi: 10.1016/0005-1098(76)90006-6
    [26]
    E. J. Davison, “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Trans. Autom. Control, vol. 21, no. 1, pp. 25–34, Feb. 1976. doi: 10.1109/TAC.1976.1101137
    [27]
    A. Isidori and C. I. Byrnes, “Output regulation of nonlinear systems,” IEEE Trans. Autom. Control, vol. 35, no. 2, pp. 131–140, Feb. 1990. doi: 10.1109/9.45168
    [28]
    C. I. Byrnes, F. D. Priscoli, and A. Isidori, Output Regulation of Uncertain Nonlinear Systems. New York, USA: Springer, 2012.
    [29]
    J. Huang, Nonlinear Output Regulation: Theory and Applications. Philadelphia, USA: SIAM, 2004.
    [30]
    Z. Chen and J. Huang, Stabilization and Regulation of Nonlinear Systems: A Robust and Adaptive Approach. Cham, Switzerland: Springer, 2015.
    [31]
    M. Lu, “A sensory feedback based discrete distributed observer to cooperative output regulation,” IEEE Trans. Autom. Control, vol. 67, no. 9, pp. 4762–4769, Sept. 2022. doi: 10.1109/TAC.2022.3162545
    [32]
    W. Huang, H. Liu, and J. Huang, “Distributed robust containment control of linear heterogeneous multi-agent systems: An output regulation approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 864–877, May 2022. doi: 10.1109/JAS.2022.105560
    [33]
    J. Wu, M. Lu, F. Deng, and J. Chen, “Output regulation of nonlinear systems by an emulation-based approach,” in Proc. American Control Conf., San Diego, USA, 2023, pp. 4779−4784.
    [34]
    A. Serrani, A. Isidori, and L. Marconi, “Semiglobal robust output regulation of minimum-phase nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 10, no. 5, pp. 379–396, Apr. 2000. doi: 10.1002/(SICI)1099-1239(20000430)10:5<379::AID-RNC482>3.0.CO;2-X
    [35]
    W. Liu and J. Huang, “Event-triggered global robust output regulation for a class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5923–5930, Nov. 2017. doi: 10.1109/TAC.2017.2700384
    [36]
    R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton, USA: Princeton University Press, 2012.
    [37]
    C. I. Byrnes and A. Isidori, “Nonlinear internal models for output regulation,” IEEE Trans. Autom. Control, vol. 49, no. 12, pp. 2244–2247, Dec. 2004. doi: 10.1109/TAC.2004.838492
    [38]
    W. Lan, Z. Chen, and J. Huang, “Semi-global robust output regulation for nonlinear systems in normal form using output feedback,” Commun. Inf. Syst., vol. 5, no. 4, pp. 385–400, Jan. 2005. doi: 10.4310/CIS.2005.v5.n4.a2
    [39]
    M. Lu and J. Huang, “A class of nonlinear internal models for global robust output regulation problem,” Int. J. Robust Nonlinear Control, vol. 25, no. 12, pp. 1831–1843, Aug. 2015. doi: 10.1002/rnc.3180
    [40]
    V. O. Nikiforov, “Adaptive non-linear tracking with complete compensation of unknown disturbances,” Eur. J. Control, vol. 4, no. 2, pp. 132–139, 1998. doi: 10.1016/S0947-3580(98)70107-4
    [41]
    D. Xu and J. Huang, “Output regulation design for a class of nonlinear systems with an unknown control direction,” J. Dyn. Syst., Meas., Control, vol. 132, no. 1, p. 014503, Jan. 2010. doi: 10.1115/1.4000076
    [42]
    E. Sontag and A. Teel, “Changing supply functions in input/state stable systems,” IEEE Trans. Autom. Control, vol. 40, no. 8, pp. 1476–1478, Aug. 1995. doi: 10.1109/9.402246
    [43]
    D. Jaeger and R. Jung, Encyclopedia of Computational Neuroscience. New York, USA: Springer, 2015.
    [44]
    W. S. Sayed, A. G. Radwan, H. A. Fahmy, and A. Elsedeek, “Trajectory control and image encryption using affine transformation of Lorenz system,” Egypt. Inf. J., vol. 22, no. 2, pp. 155–166, Jul. 2021.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (214) PDF downloads(29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return