A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 11
Nov.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
B. Yang, C. Tang, Y. Liu, G. Wen, and G. Chen, “A linear programming-based reinforcement learning mechanism for incomplete-information games,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 11, pp. 2340–2342, Nov. 2024. doi: 10.1109/JAS.2024.124464
Citation: B. Yang, C. Tang, Y. Liu, G. Wen, and G. Chen, “A linear programming-based reinforcement learning mechanism for incomplete-information games,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 11, pp. 2340–2342, Nov. 2024. doi: 10.1109/JAS.2024.124464

A Linear Programming-Based Reinforcement Learning Mechanism for Incomplete-Information Games

doi: 10.1109/JAS.2024.124464
More Information
  • loading
  • [1]
    H. Kebriaei, A. Rahimi-Kian, and M. N. Ahmadabadi, “Model-based and learning-based decision making in incomplete information cournot games: A state estimation approach,” IEEE Trans. Syst. Man Cybern. Syst., vol. 45, no. 4, pp. 713–718, Apr. 2015. doi: 10.1109/TSMC.2014.2373336
    [2]
    L. Xue, C. Sun, D. Wunsch, Y. Zhou, and F. Yu, “An adaptive strategy via reinforcement learning for the prisoners dilemma game,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 301–310, Jan. 2018. doi: 10.1109/JAS.2017.7510466
    [3]
    W. Zha, J. Chen, and Z. Peng, “Dynamic multi-team antagonistic games model with incomplete information and its application to multi-UAV,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 1, pp. 74–84, Jan. 2015. doi: 10.1109/JAS.2015.7032908
    [4]
    H. Wang, T. Huang, X. Liao, H. Abu-Rub, and G. Chen, “Reinforcement learning for constrained energy trading games with incomplete information,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3404–3416, Oct. 2017. doi: 10.1109/TCYB.2016.2539300
    [5]
    D. Shen, “Iterative learning control with incomplete information: A survey,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 885–901, Sep. 2018. doi: 10.1109/JAS.2018.7511123
    [6]
    G. Wen, J. Fu, P. Dai, and J. Zhou, “DTDE: A new cooperative multiagent reinforcement learning framework,” The Innovation, vol. 2, no. 4, p. 100162, Sep. 2021. doi: 10.1016/j.xinn.2021.100162
    [7]
    J. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,” Mach. Learn., vol. 16, no. 3, pp. 185–202, Sep. 1994.
    [8]
    Y. Zhou, J. Li, and J. Zhu, “Posterior sampling for multi-agent reinforcement learning: Solving extensive games with imperfect information,” in Proc. Int. Conf. Learn. Represent., 2020.
    [9]
    L. Meng, Z. Ge, P. Tian, B. An, and Y. Gao, “An efficient deep reinforcement learning algorithm for solving imperfect information extensive-form games,” in Proc. AAAI Conf. Artif. Intell., Jun. 2023, vol. 37, no. 5, pp. 5823–5831.
    [10]
    E. Lockhart, M. Lanctot, J. Pérolat, J. Lespiau, D. Morrill, F. Timbers, and K. Tuyls, “Computing approximate equilibria in sequential adversarial games by exploitability descent,” in Proc. Int. Joint Conf. Artif. Intell., 2019, pp. 464–470.
    [11]
    S. Srinivasan, M. Lanctot, V. Zambaldi, J. Pérolat, K. Tuyls, R. Munos, and M. Bowling, “Actor-critic policy optimization in partially observable multiagent environments,” in Proc. Adv. Neural Inf. Proces. Syst., 2018, pp. 3422–3435.
    [12]
    M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Perolat, D. Silver, and T. Graepel, “A unified game-theoretic approach to multiagent reinforcement learning,” in Proc. Adv. Neural Inf. Proces. Syst., 2017, pp. 4191–4204.
    [13]
    S. Fang and S. Puthenpura, Linear Optimization and Extensions: Theory and Algorithms. Englewood Cliffs, USA: Prentice Hall, 1993.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (83) PDF downloads(37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return