A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 6
Jun.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
F. H. Bi, X. Luo, B. Shen, H. L. Dong, and  Z. D. Wang,  “Proximal alternating-direction-method-of-multipliers-incorporated nonnegative latent factor analysis,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1388–1406, Jun. 2023. doi: 10.1109/JAS.2023.123474
Citation: F. H. Bi, X. Luo, B. Shen, H. L. Dong, and  Z. D. Wang,  “Proximal alternating-direction-method-of-multipliers-incorporated nonnegative latent factor analysis,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1388–1406, Jun. 2023. doi: 10.1109/JAS.2023.123474

Proximal Alternating-Direction-Method-of- Multipliers-Incorporated Nonnegative Latent Factor Analysis

doi: 10.1109/JAS.2023.123474
Funds:  This work was supported by the National Natural Science Foundation of China (62272078, U21A2019), the Hainan Province Science and Technology Special Fund of China (ZDYF2022SHFZ105), and the CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-035A)
More Information
  • High-dimensional and incomplete (HDI) data subject to the nonnegativity constraints are commonly encountered in a big data-related application concerning the interactions among numerous nodes. A nonnegative latent factor analysis (NLFA) model can perform representation learning to HDI data efficiently. However, existing NLFA models suffer from either slow convergence rate or representation accuracy loss. To address this issue, this paper proposes a proximal alternating-direction-method-of-multipliers-based nonnegative latent factor analysis (PAN) model with two-fold ideas: 1) adopting the principle of alternating-direction-method-of-multipliers to implement an efficient learning scheme for fast convergence and high computational efficiency; and 2) incorporating the proximal regularization into the learning scheme to suppress the optimization fluctuation for high representation learning accuracy to HDI data. Theoretical studies verify that PAN converges to a Karush-Kuhn-Tucker (KKT) stationary point of its nonnegativity-constrained learning objective with its learning scheme. Experimental results on eight HDI matrices from real applications demonstrate that the proposed PAN model outperforms several state-of-the-art models in both estimation accuracy for missing data of an HDI matrix and computational efficiency.

     

  • loading
  • [1]
    W. J. Huang, P. Y. Zhang, Y. T. Chen, M. C. Zhou, Y. Al-Turki, and A. Abusorrah, “QoS prediction model of cloud services based on deep learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 564–566, Mar. 2022. doi: 10.1109/JAS.2021.1004392
    [2]
    D. Wu and X. Luo, “Robust latent factor analysis for precise representation of high-dimensional and sparse data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 796–805, Apr. 2021. doi: 10.1109/JAS.2020.1003533
    [3]
    X. Luo, M. C. Zhou, S. Li, Z. H. You, Y. N. Xia, and Q. S. Zhu, “A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 3, pp. 579–92, Mar. 2016. doi: 10.1109/TNNLS.2015.2415257
    [4]
    I. Alqassem, I. Rahwan, and D. Svetinovic, “The anti-social system properties: Bitcoin network data analysis,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 1, pp. 21–31, Jan. 2020. doi: 10.1109/TSMC.2018.2883678
    [5]
    A. Pareja, G. Domeniconi, J. Chen, T. F. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, and C. Leiserson, “EvolveGCN: Evolving graph convolutional networks for dynamic graphs,” in Proc. 34th AAAI Conf. Artificial Intelligence, New York, USA, 2020, pp. 5363–5370.
    [6]
    Z. G. Liu, G. X. Yuan, and X. Luo, “Symmetry and nonnegativity-constrained matrix factorization for community detection,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1691–1693, Sept. 2022. doi: 10.1109/JAS.2022.105794
    [7]
    M. Aliannejadi, D. Rafailidis, and F. Crestani, “A joint two-phase time-sensitive regularized collaborative ranking model for point of interest recommendation,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 6, pp. 1050–1063, Jun. 2020. doi: 10.1109/TKDE.2019.2903463
    [8]
    D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and X. D. Wu, “A data-characteristic-aware latent factor model for web services QoS prediction,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 6, pp. 2525–2538, Jun. 2022.
    [9]
    J. H. Tang, X. Y. Du, X. N. He, F. J. Yuan, Q. Tian, and T. S. Chua, “Adversarial training towards robust multimedia recommender system,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 5, pp. 855–867, May 2020. doi: 10.1109/TKDE.2019.2893638
    [10]
    G. Y. Zhao, Y. T. Li, and Q. R. Xu, “From emotion AI to cognitive AI,” Int. J. Netw. Dyn. Intell., vol. 1, no. 1, pp. 65–72, Dec. 2022.
    [11]
    H. Li, P. S. Wu, N. Y. Zeng, Y. R. Liu, and F. E. Alsaadi, “A survey on parameter identification, state estimation and data analytics for lateral flow immunoassay: From systems science perspective,” Int. J. Syst. Sci., vol. 53, no. 16, pp. 3556–3576, Jun. 2022. doi: 10.1080/00207721.2022.2083262
    [12]
    Y. Yuan, X. C. Tang, W. Zhou, W. Pan, X. T. Li, H. T. Zhang, H. Ding, and J. Goncalves, “Data driven discovery of cyber physical systems,” Nat. Commun., vol. 10, no. 1, p. 4894, Oct. 2019. doi: 10.1038/s41467-019-12490-1
    [13]
    S. Sedhain, A. K. Menon, S. Sanner, and L. X. Xie, “AutoRec: Autoencoders meet collaborative filtering,” in Proc. 24th Int. Conf. World Wide Web, Florence, Italy, 2015, pp. 111–112.
    [14]
    X. Luo, M. C. Zhou, S. Li, and M. S. Shang, “An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications,” IEEE Trans. Ind. Inf., vol. 14, no. 5, pp. 2011–2022, May 2018. doi: 10.1109/TII.2017.2766528
    [15]
    F. Yao, Y. L. Ding, S. G. Hong, and S. H. Yang, “A survey on evolved LoRa-based communication technologies for emerging internet of things applications,” Int. J. Netw. Dyn. Intell., vol. 1, no. 1, pp. 4–19, Dec. 2022.
    [16]
    D. Hajinezhad, T. H. Chang, X. F. Wang, Q. J. Shi, and M. Y. Hong, “Nonnegative matrix factorization using ADMM: Algorithm and convergence analysis,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Shanghai, China, 2016, pp. 4742–4746.
    [17]
    D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999. doi: 10.1038/44565
    [18]
    D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Proc. 13th Int. Conf. Neural Information Processing Systems, Cambridge, USA, 2000, pp. 535–541.
    [19]
    C. C. Leng, H. Zhang, G. R. Cai, Z. Chen, and A. Basu, “Total variation constrained non-negative matrix factorization for medical image registration,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1025–1037, May 2021. doi: 10.1109/JAS.2021.1003979
    [20]
    K. J. Huang, N. D. Sidiropoulos, and A. Swami, “Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition,” IEEE Trans. Signal Process., vol. 62, no. 1, pp. 211–224, Jan. 2014. doi: 10.1109/TSP.2013.2285514
    [21]
    V. Leplat, N. Gillis, and A. M. S. Ang, “Blind audio source separation with minimum-volume beta-divergence NMF,” IEEE Trans. Signal Process., vol. 68, pp. 3400–3410, Jan. 2020. doi: 10.1109/TSP.2020.2991801
    [22]
    N. Koenigstein, G. Dror, and Y. Koren, “Yahoo! Music recommendations: Modeling music ratings with temporal dynamics and item taxonomy,” in Proc. 5th ACM Conf. Recommender Systems, Chicago, USA, 2011, pp. 165–172.
    [23]
    X. Luo, M. C. Zhou, S. Li, L. Hu, and M. S. Shang, “Non-negativity constrained missing data estimation for high-dimensional and sparse matrices from industrial applications,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1844–1855, May 2020. doi: 10.1109/TCYB.2019.2894283
    [24]
    A. H. Khan, X. W. Cao, S. Li, V. N. Katsikis, and L. F. Liao, “BAS-ADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 461–471, Mar. 2020. doi: 10.1109/JAS.2020.1003048
    [25]
    S. Boyd, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends® Mach. Learn., vol. 3, no. 1, pp. 1–122, Jul. 2011.
    [26]
    H. H. Chao and L. Vandenberghe, “Entropic proximal operators for nonnegative trigonometric polynomials,” IEEE Trans. Signal Proces., vol. 66, no. 18, pp. 4826–4838, Sept. 2018. doi: 10.1109/TSP.2018.2862399
    [27]
    N. K. Dhingra, S. Z. Khong, and M. R. Jovanović, “The proximal augmented Lagrangian method for nonsmooth composite optimization,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2861–2868, Jul. 2019. doi: 10.1109/TAC.2018.2867589
    [28]
    D. S. Ding and M. R. Jovanović, “Global exponential stability of primal-dual gradient flow dynamics based on the proximal augmented Lagrangian,” in Proc. American Control Conf., Philadelphia, USA, 2019, pp. 3414–3419.
    [29]
    R. I. Boç and D. K. Nguyen, “The proximal alternating direction method of multipliers in the nonconvex setting: Convergence analysis and rates,” Math. Oper. Res., vol. 45, no. 2, pp. 682–712, May 2020. doi: 10.1287/moor.2019.1008
    [30]
    M. T. Chao, Y. Zhang, and J. B. Jian, “An inertial proximal alternating direction method of multipliers for nonconvex optimization,” Int. J. Comput. Math., vol. 98, no. 6, pp. 1199–1217, Aug. 2021. doi: 10.1080/00207160.2020.1812585
    [31]
    Y. C. Wang and J. Bai, “Decoding nonbinary LDPC codes via proximal-ADMM approach,” IEEE Trans Information Theory, vol. 68, no. 9, pp. 5730–5746, Sept. 2022.
    [32]
    B. X. Zhang and Z. B. Zhu, “Linearized proximal alternating direction method of multipliers for parallel magnetic resonance imaging,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 763–769, Dec. 2017. doi: 10.1109/JAS.2016.7510226
    [33]
    D. Goldsztajn and F. Paganini, “Proximal regularization for the saddle point gradient dynamics,” IEEE Trans. Autom. Control, vol. 66, no. 9, pp. 4385–4392, Sept. 2021. doi: 10.1109/TAC.2020.3045124
    [34]
    X. Luo, H. Wu, Z. Wang, J. J. Wang, and D. Y. Meng, “A novel approach to large-scale dynamically weighted directed network representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 9756–9773, Dec. 2022. doi: 10.1109/TPAMI.2021.3132503
    [35]
    W. Y. Wang, Y. M. Zhou, M. T. Cheng, Y. Wang, C. H. Zheng, Y. Xiong, P. Chen, Z. W. Ji, and B. Wang, “Potential pathogenic genes prioritization based on protein domain interaction network analysis,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 18, no. 3, pp. 1026–1034, May-Jun. 2021. doi: 10.1109/TCBB.2020.2983894
    [36]
    D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, and C. Mering, “STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets,” Nucleic Acids Res., vol. 47, no. D1, pp. D607–D613, Jan. 2019. doi: 10.1093/nar/gky1131
    [37]
    T. A. Davis and Y. F. Hu, “The university of Florida sparse matrix collection,” ACM Trans. Math. Software, vol. 38, no. 1, p. 1, Nov. 2011.
    [38]
    J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl, “GroupLens: Applying collaborative filtering to Usenet news,” Commun. ACM, vol. 40, no. 3, pp. 77–87, Mar. 1997. doi: 10.1145/245108.245126
    [39]
    X. K. Zhu, X. Y. Jing, D. Wu, Z. Y. He, J. C. Cao, D. Yue, and L. Wang, “Similarity-maintaining privacy preservation and location-aware low-rank matrix factorization for QoS prediction based web service recommendation,” IEEE Trans Services Computing, vol. 14, no. 3, pp. 889–902, May–Jun. 2021.
    [40]
    L. Dong, Y. Yuan, and X. Luxs, “Spectral–spatial joint sparse NMF for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 3, pp. 2391–2402, Mar. 2021. doi: 10.1109/TGRS.2020.3006109
    [41]
    S. Dhelim, H. S. Ning, N. Aung, R. H. Huang, and J. H. Ma, “Personality-aware product recommendation system based on user interests mining and metapath discovery,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 1, pp. 86–98, Feb. 2021. doi: 10.1109/TCSS.2020.3037040
    [42]
    Y. E. Salehani, E. Arabnejad, A. Rahiche, A. Bakhta, and M. Cheriet, “MSdB-NMF: MultiSpectral document image binarization framework via non-negative matrix factorization approach,” IEEE Trans. Image Process, vol. 29, pp. 9099–9112, Sept. 2020. doi: 10.1109/TIP.2020.3023613
    [43]
    S. Imran, T. Mahmood, A. Morshed, and T. Sellis, “Big data analytics in healthcare — a systematic literature review and roadmap for practical implementation,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 1–22, Jan. 2021. doi: 10.1109/JAS.2020.1003384
    [44]
    X. Luo, Y. Yuan, S. L. Chen, N. Y. Zeng, and Z. D. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324
    [45]
    H. Ma, D. Y. Zhou, C. Liu, M. R. Lv, and I. King, “Recommender systems with social regularization,” in Proc. 4th Int. Conf. Web Search and Data Mining, Hong Kong, China, 2011, pp. 287–296.
    [46]
    K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant time collaborative filtering algorithm,” Inf. Retr., vol. 4, no. 2, pp. 133–151, Jul. 2001. doi: 10.1023/A:1011419012209
    [47]
    X. N. He, K. Deng, X. Wang, Y. Li, Y. D. Zhang, and M. Wang, “LightGCN: Simplifying and powering graph convolution network for recommendation,” in Proc. 43rd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Xi’an, China, 2020, pp. 639–648.
    [48]
    X. N. He, L. Z. Liao, H. W. Zhang, L. Q. Nie, X. Hu, and T. S. Chua, “Neural collaborative filtering,” in Proc. 26th Int. Conf. World Wide Web, Perth, Australia, 2017, pp. 173–182.
    [49]
    W. Guo, Y. Yang, Y. C. Hu, C. Y. Wang, H. F. Guo, Y. X. Zhang, R. M. Tang, W. N. Zhang, and X. Q. He, “Deep graph convolutional networks with hybrid normalization for accurate and diverse recommendation,” in Proc. 3rd Workshop Deep Learning Practice for High-Dimensional Sparse Data with KDD, 2021.
    [50]
    Y. J. Lin, P. J. Ren, Z. M. Chen, Z. C. Ren, D. X. Yu, Jun Ma, M. de Rijke, and X. Z. Cheng, “Meta matrix factorization for federated rating predictions,” in Proc. 43rd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Xi’an, China, 2020, pp. 981–990.
    [51]
    T. Kong, T. Kim, J. Jeon, J. Choi, Y. C. Lee, N. Park, and S. W. Kim, “Linear, or non-linear, that is the question!” in Proc. 15th ACM Int. Conf. Web Search and Data Mining, Tempe, USA, 2022, pp. 517–525.
    [52]
    D. Wu, X. Luo, Y. He, and M. C. Zhou, “A prediction-sampling-based multilayer-structured latent factor model for accurate representation to high-dimensional and sparse data,” IEEE Trans. Neural Netw. Learn. Syst., 2022,
    [53]
    J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.
    [54]
    X. Luo, Z. G. Liu, M. Shang, J. G. Lou, and M. C. Zhou, “Highly-accurate community detection via pointwise mutual information-incorporated symmetric non-negative matrix factorization,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 463–476, Jan.–Mar. 2021. doi: 10.1109/TNSE.2020.3040407
    [55]
    A. Sawatzky, Q. F. Xu, C. O. Schirra, and M. A. Anastasio, “Proximal ADMM for multi-channel image reconstruction in spectral X-ray CT,” IEEE Trans. Med. Imaging, vol. 33, no. 8, pp. 1657–1668, Aug. 2014. doi: 10.1109/TMI.2014.2321098
    [56]
    C. H. Chen, R. H. Chan, S. Q. Ma, and J. F. Yang, “Inertial proximal ADMM for linearly constrained separable convex optimization,” SIAM J. Imaging Sci., vol. 8, no. 4, pp. 2239–2267, Oct. 2015. doi: 10.1137/15100463X
    [57]
    C. L. Camacho-Villalón, M. Dorigo, and T. Stützle, “PSO-X: A component-based framework for the automatic design of particle swarm optimization algorithms,” IEEE Trans. Evol. Comput., vol. 26, no. 3, pp. 402–416, Jun. 2022. doi: 10.1109/TEVC.2021.3102863
    [58]
    C. Lee, H. Hasegawa, and S. C. Gao, “Complex-valued neural networks: A comprehensive survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1406–1426, Aug. 2022. doi: 10.1109/JAS.2022.105743
    [59]
    X. Liu, M. Y. Yan, L. Deng, G. Q. Li, X. C. Ye, and D. R. Fan, “Sampling methods for efficient training of graph convolutional networks: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 205–234, Feb. 2022. doi: 10.1109/JAS.2021.1004311
    [60]
    F. T. Sáenz, F. Arcas-Tunez, and A. Muñoz, “Nation-wide touristic flow prediction with graph neural networks and heterogeneous open data,” Information Fusion, vol. 91, pp. 582–597, Mar. 2023. doi: 10.1016/j.inffus.2022.11.005
    [61]
    X. M. Liu, S. C. Wu, Z. H. Zhang, and C. Shen, “Unify local and global information for top-N recommendation,” in Proc. 45th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Madrid, Spain, 2022, pp. 1262–1272.
    [62]
    L. H. Xia, C. Huang, Y. Xu, J. S. Zhao, D. W. Yin, and J. Huang, “Hypergraph contrastive collaborative filtering,” in Proc. 45th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Madrid, Spain, 2022, pp. 70–79.
    [63]
    P. Liakos, K. Papakonstantinopoulou, A. Ntoulas, and A. Delis, “Rapid detection of local communities in graph streams,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 5, pp. 2375–2386, May 2022. doi: 10.1109/TKDE.2020.3012608
    [64]
    Z. Wang, C. Y. Wang, X. H. Li, C. Gao, X. L. Li, and J. Y. Zhu, “Evolutionary Markov dynamics for network community detection,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 3, pp. 1206–1220, Mar. 2022. doi: 10.1109/TKDE.2020.2997043
    [65]
    F. M. Shakiba, M. Shojaee, S. M. Azizi, and M. C. Zhou, “Real-time sensing and fault diagnosis for transmission lines,” Int. J. Netw. Dyn. Intell., vol. 1, no. 1, pp. 36–47, Dec. 2022.
    [66]
    D. A. Ji, C. Wang, J. H. Li, and H. L. Dong, “A review: Data driven-based fault diagnosis and RUL prediction of petroleum machinery and equipment,” Syst. Sci. Control Eng., vol. 9, no. 1, pp. 724–747, Jan. 2021. doi: 10.1080/21642583.2021.1992684
    [67]
    Y. Yuan, G. J. Ma, C. Cheng, B. T. Zhou, H. Zhao, H. T. Zhang, and H. Ding, “A general end-to-end diagnosis framework for manufacturing systems,” Nat. Sci. Rev., vol. 7, no. 2, pp. 418–429, Feb. 2020. doi: 10.1093/nsr/nwz190
    [68]
    F. Zhang, E. K. Xue, R. X. Guo, G. Z. Qu, G. S. Zhao, and A. Y. Zomaya, “DS-ADMM++: A novel distributed quantized ADMM to speed up differentially private matrix factorization,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 6, pp. 1289–1302, Jun. 2022. doi: 10.1109/TPDS.2021.3110104
    [69]
    X. Luo, W. Qin, A. Dong, K. Sedraoui, and M. C. Zhou, “Efficient and high-quality recommendations via momentum-incorporated parallel stochastic gradient descent-based learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 402–411, Feb. 2021. doi: 10.1109/JAS.2020.1003396
    [70]
    Y. C. Wang and J. Bai, “Decoding nonbinary LDPC codes via proximal-ADMM approach,” IEEE Trans. Inf. Theory, vol. 68, no. 9, pp. 5730–5746, Sept. 2022. doi: 10.1109/TIT.2022.3147906
    [71]
    L. Chen and X. Luo, “Tensor distribution regression based on the 3D conventional neural networks,” IEEE/CAA J. Autom. Sinica, 2022, DOI: 10.1109/JAS.2022.123591.
    [72]
    L. Hu, S. C. Yang, X. Luo, H. Q. Yuan, K. Sedraoui, and M. C. Zhou, “A distributed framework for large-scale protein-protein interaction data analysis and prediction using MapReduce,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 160–172, Jan. 2022. doi: 10.1109/JAS.2021.1004198
    [73]
    X. Luo, H. Wu, and Z. C. Li, “NeuLFT: A novel approach to nonlinear canonical polyadic decomposition on high-dimensional incomplete tensors,” IEEE Trans. Knowl. Data Eng., 2022, DOI: 10.1109/TKDE.2022.3176466.
    [74]
    H. Yang, K. L. Ma, and J. Cheng, “Rethinking graph regularization for graph neural networks,” in Proc. 35th AAAI Conf. Artificial Intelligence, 2021, pp. 4573–4581.
    [75]
    M. Q. Zhu, X. Wang, C. Shi, H. Y. Ji, and P. Cui, “Interpreting and unifying graph neural networks with an optimization framework,” in Proc. Web Conf., Ljubljana, Slovenia, 2021, pp. 1215–1226.
    [76]
    Y. P. Zhang, H. Zhou, Y. F. Wang, M. Z. Zhang, B. Feng, and W. L. Wu, “A novel multichannel seismic deconvolution method via structure-oriented regularization,” IEEE Trans. Geosci. Remote Sens., vol. 60, p. 5910410, Jan. 2022.
    [77]
    H. N. Huang, G. X. Zhou, N. Y. Liang, Q. B. Zhao, and S. L. Xie, “Diverse deep matrix factorization with hypergraph regularization for multiview data representation,” IEEE/CAA J. Autom. Sinica, 2022, DOI: 10.1109/JAS.2022.105980.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(11)

    Article Metrics

    Article views (410) PDF downloads(71) Cited by()

    Highlights

    • A proximal ADMM-based nonnegative latent factor analysis (PAN) model is proposed. It adopts the following two-fold ideas: 1) adopting the ADMM principle to implement an efficient learning scheme for fast convergence and high computational efficiency; and 2) incorporating the proximal regularization into the learning scheme to suppress the optimization fluctuation for high representation learning accuracy to an HDI matrix
    • Detailed algorithm design and analysis for a PAN model are presented
    • Theoretical proof of PAN’s convergence is given. The proof indicates that a PAN model converges to a Karush-Kuhn-Tucker (KKT) stationary point of its constrained learning objective with its ADMM-incorporated learning scheme

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return