IEEE/CAA Journal of Automatica Sinica
Citation:  Q. B. Ge, X. M. Hu, Y. Y. Li, H. L. He, and Z. H. Song, “A novel adaptive Kalman filter based on credibility measure,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 103–120, Jan. 2023. doi: 10.1109/JAS.2023.123012 
[1] 
R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASMEJ. Basic Eng, vol. 82, pp. 35–45, 1960. doi: 10.1115/1.3662552

[2] 
Q.B. Ge, T. Shao, Z.S. Duan, and C.L. Wen, “Performance analysis of the Kalman filter with mismatched noise covariances,” IEEE. Trans. Autom. Control, vol. 61, no. 12, pp. 4014–4019, 2016. doi: 10.1109/TAC.2016.2535158

[3] 
L. E. Andersson, L.Imsland, E. F. Brekke, and F. Scibilia, “On Kalman filtering with linear state equality constraints,” Automatica, vol. 101, pp. 467–470, 2019. doi: 10.1016/j.automatica.2018.12.010

[4] 
Q.B. Ge, T.X. Chen, H.L. He, and Z.T. Hu, “CramerRao lower boundbased observable degree analysis,” Science China (Information Sciences)

[5] 
L. F. Zhang, S. P. Wang, M. S. Selezneva, and K. A. Neusypin, “A new adaptive Kalman filter for navigation systems of carrierbased aircraft,” Chinese J. Aeronautics, vol. 35, no. 1, pp. 416–425, 2022. doi: 10.1016/j.cja.2021.04.014

[6] 
C.Y. Zhang, “Research on adaptive filtering method,” J. Aeronautics, vol. 19, no. 1, pp. 97–100, 1998.

[7] 
D. Zhao, S.X. Ding, H. R. Karimi, Y.Y. Li, and Y.Q. Wang, “On robust Kalman filter for twodimensional uncertain linear discrete timevarying systems: A least squares method,” Automatica, vol. 99, pp. 203–212, 2019. doi: 10.1016/j.automatica.2018.10.029

[8] 
M. B. Luca, S. Azou, G. Burel, and A. Serbanescu, “On exact Kalman filtering of polynomial systems,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 53, no. 6, pp. 1329–1340, 2006. doi: 10.1109/TCSI.2006.870899

[9] 
Q.B. Ge, Z.C. Ma, J.L. Li, Q.M. Yang, Z.Y. Lu, and H. Li, “Adaptive cubature Kalman filter with the estimation of correlation between multiplicative noise and additive measurement noise,” Chinese J. Aeronautics, vol. 35, no. 5, pp. 40–52, 2022. doi: 10.1016/j.cja.2021.05.004

[10] 
Q.B. Ge, T. Shao, S.D. Chen, and C.L. Wen, “Carrier tracking estimation analysis by using the extended strong tracking filtering,” IEEE Trans. Industrial Electronics, vol. 64, no. 2, pp. 1415–1424, 2017. doi: 10.1109/TIE.2016.2610403

[11] 
L. Zhao and K. Wu, “New adaptive Kalman filtering algorithm and application,” Piezoelectric and AcoustoOptic, vol. 31, no. 6, pp. 908–911, 2009.

[12] 
A. P. Sage and G. W. Husa, “Algorithms for sequential adaptive estimation of prior statistics,” in Proc. 8th IEEE Symp. Adaptive Processes, 1969, pp. 17–19.

[13] 
S. Sarkka and A. Nummenmaa, “Recursive noise adaptive Kalman filtering by variational Bayesian approximations,” IEEE Trans. Automatic Control, vol. 54, no. 3, pp. 596–600, 2009. doi: 10.1109/TAC.2008.2008348

[14] 
J. Sun, Z. Jie, and X. Gu, “Variational Bayesian twostage Kalman filter for systems with unknown inputs,” Procedia Engineering, vol. 29, no. 4, pp. 2265–2273, 2012.

[15] 
Y. Huang, Y. Zhang, Z. Wu, L. Ning, and J. Chambers, “A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices,” IEEE Trans. Automatic Control, vol. 63, no. 2, pp. 594–601, 2018. doi: 10.1109/TAC.2017.2730480

[16] 
M. Zorzi, “Robust Kalman filtering under model perturbations,” IEEE Trans. Automatic Control, vol. 62, no. 6, pp. 2902–2907, 2017. doi: 10.1109/TAC.2016.2601879

[17] 
Z.W. Zhou and H.T. Fang, “L_{2}stability of discretetime Kalman filter with random coefficients under incorrect covariance,” ACTA Automatica Sinica, vol. 39, no. 1, pp. 43–52, 2013. doi: 10.1016/S18741029(13)600051

[18] 
T. Shao, Q.B. Ge, Z.S. Duan, and J. Yu, “Relative closeness ranking of Kalman filtering with multiple mismatched measurement noise covariances,” IET Control Theory Appl, vol. 12, no. 8, pp. 1133–1140, 2018. doi: 10.1049/ietcta.2017.1088

[19] 
S. Gibson and B. Ninness, “Robust maximumlikelihood estimation of multivariable dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667–1682, 2005. doi: 10.1016/j.automatica.2005.05.008

[20] 
Z. Zhao, J. Wang, X. Cheng, and Y. Qi, “Particle swarm optimized particle filter and its application in visual tracking,” in Proc. 6th. Natural. Comput. Conf., 2010, pp. 2673–2676.

[21] 
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. ICNN. Conf. Neural Networks, 1995, pp. 1942–1948.

[22] 
B.D. Chen, X. Liu, H.Q. Zhao, and J. C. Principe, “Maximum correntropy Kalman filter,” Automatica, vol. 76, pp. 70–77, 2017. doi: 10.1016/j.automatica.2016.10.004

[23] 
Z.Z. Wu, M.Y. Fu, Y. Xu, and R.Q. Lu, “A distributed Kalman filtering algorithm with fast finitetime convergence for sensor networks,” Automatica, vol. 95, pp. 63–72, 2018. doi: 10.1016/j.automatica.2018.05.012

[24] 
M.M. Wang, Q.B. Ge, C.X. Li, and C.Y. Sun, “Charging diagnosis of power battery based on adaptive STCKF and BLS for electric vehicles,” IEEE Trans. Vehicular Technology, vol. 71, no. 8, pp. 8251–8265, 2022. doi: 10.1109/TVT.2022.3171766

[25] 
D. Etter, M. Hicks, and K. Cho, “Recursive adaptive filter design using an adaptive genetic algorithm,” in Proc. IEEE. ICASSP. Conf, 1982, pp. 635–638.

[26] 
N. Benvenuto and M. Marchesi, “Digital filters design by simulated annealing,” IEEE Trans. Circuits Syst, vol. 36, no. 3, pp. 459–460, 1989. doi: 10.1109/31.17597

[27] 
K. Watanabe, F. Campelo, and H. Igarashi, “Topology optimization based on immune algorithm and multigrid method,” IEEE Trans. Magn, vol. 43, no. 4, pp. 1637–1640, April. 2007. doi: 10.1109/TMAG.2006.892259

[28] 
S. Qian, Y. Ye, B. Jiang, and J. Wang, “Constrained multiobjective optimization algorithm based on immune system model,” IEEE Trans. Cybern, vol. 46, no. 9, pp. 2056–2069, 2016. doi: 10.1109/TCYB.2015.2461651

[29] 
Q. Song, Y. Wu, and Y.C. Soh, “Robust adaptive gradientdescent training algorithm for recurrent neural networks in discrete time domain,” IEEE Trans. Neural Networks, vol. 19, no. 11, pp. 1841–1853, 2008. doi: 10.1109/TNN.2008.2001923

[30] 
R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood and the EM algorithm,” SIAM Review, vol. 26, no. 2, pp. 195–239, 1984. doi: 10.1137/1026034

[31] 
Y. Zhang, P. Zhou, and G. Cui, “Multimodel based PSO method for burden distribution matrix optimization with expected burden distribution output behaviors,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1506–1512, 2018.

[32] 
Y. Wang and X. Zuo, “An effective cloud workflow scheduling approach combining PSO and idle time slotaware rules,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1079–1094, 2021. doi: 10.1109/JAS.2021.1003982

[33] 
Z. Lv, L. Wang, Z. Han, and J. Zhao, “Surrogateassisted particle swarm optimization algorithm with Pareto active learning for expensive multiobjective optimization,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 838–849, 2019. doi: 10.1109/JAS.2019.1911450

[34] 
L.F. Xu, Z.S. Huang, Z.Z. Yang, and W.L. Ding, “Mixed particle swarm optimization algorithm with multistage disturbances,” J. Software, vol. 30, no. 6, pp. 1835–1852, 2019.
