A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 11
Nov.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
A. Garza-Alonso, M. Basin, and P. C. Rodriguez-Ramirez, “Predefined-time backstepping stabilization of autonomous nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2020–2022, Nov. 2022. doi: 10.1109/JAS.2022.105953
Citation: A. Garza-Alonso, M. Basin, and P. C. Rodriguez-Ramirez, “Predefined-time backstepping stabilization of autonomous nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2020–2022, Nov. 2022. doi: 10.1109/JAS.2022.105953

Predefined-Time Backstepping Stabilization of Autonomous Nonlinear Systems

doi: 10.1109/JAS.2022.105953
More Information
  • loading
  • [1]
    J. Tsinias, “A theorem on global stabilization of nonlinear systems by linear feedback,” Systems and Control Letters, vol. 17, no. 5, pp. 357–362, 1991. doi: 10.1016/0167-6911(91)90135-2
    [2]
    S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control and Optimization, vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358
    [3]
    X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, no. 5, pp. 881–888, 2005. doi: 10.1016/j.automatica.2004.11.036
    [4]
    A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Automatic Control, vol. 57, no. 8, pp. 2106–2110, 2012. doi: 10.1109/TAC.2011.2179869
    [5]
    C. Wang, H. Tnunay, Z. Zuo, B. Lennox, and Z. Ding, “Fixed-time formation control of multirobot systems: Design and experiments,” IEEE Trans. Industrial Electronics, vol. 66, no. 8, pp. 6292–6301, 2018.
    [6]
    Z. Zuo, “Fixed-time stabilization of general linear systems with input delay,” J. Franklin Institute, vol. 356, no. 8, pp. 4467–4477, 2019. doi: 10.1016/j.jfranklin.2019.04.006
    [7]
    Z. Zuo, J. Song, B. Tian, and M. Basin, “Robust fixed-time stabilization control of generic linear systems with mismatched disturbances,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 52, no. 2, pp. 759–768, 2022. doi: 10.1109/TSMC.2020.3010221
    [8]
    A. K. Pal, S. Kamal, S. K. Nagar, B. Bandyopadhyay, and L. Fridman, “Design of controllers with arbitrary convergence time,” Automatica, vol. 112, p. 108710, 2020.
    [9]
    E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, and A. G. Loukianov, “A Lyapunov-like characterization of predefined-time stability,” IEEE Trans. Automatic Control, vol. 65, no. 11, pp. 4922–4927, 2020. doi: 10.1109/TAC.2020.2967555
    [10]
    A. Garza-Alonso, M. Basin, and P. Rodriguez-Ramirez, “Predefined-time stabilization of permanent-magnet synchronous motor,” Trans. Institute of Measurement and Control, vol. 43, no. 13, pp. 3044–3054, 2021. doi: 10.1177/01423312211016741
    [11]
    Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time,” Automatica, vol. 83, pp. 243–251, 2017. doi: 10.1016/j.automatica.2017.06.008
    [12]
    Y. Cao, C. Wen, S. Tan, and Y. Song, “Prespecifiable fixed-time control for a class of uncertain nonlinear systems in strict-feedback form,” Int. J. Robust and Nonlinear Control, vol. 30, no. 3, pp. 1203–1222, 2020. doi: 10.1002/rnc.4820
    [13]
    P. Krishnamurthy, F. Khorrami, and M. Krstic, “Robust adaptive prescribed-time stabilization via output feedback for uncertain nonlinear strict-feedback-like systems,” European J. Control, vol. 55, pp. 14–23, 2020. doi: 10.1016/j.ejcon.2019.09.005
    [14]
    B. Ning, Q.-L. Han, and Z. Zuo, “Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach,” IEEE Trans. Automatic Control, vol. 66, no. 6, pp. 2739–2745, 2020.
    [15]
    B. Zhou and Y. Shi, “Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback,” IEEE Trans. Automatic Control, vol. 66, no. 12, pp. 6123–6130, 2021. doi: 10.1109/TAC.2021.3061645
    [16]
    N. de la Cruz and M. Basin, “Predefined-time control of full-scale 4D model of permanent-magnet synchronous motor with deterministic disturbances and stochastic noises,” Actuators, vol. 10, p. 306, 2021.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (107) PDF downloads(77) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return