IEEE/CAA Journal of Automatica Sinica
Citation:  X. B. Ping, J. C. Hu, T. Y. Lin, B. C. Ding, P. Wang, and Z. W. Li, “A survey of output feedback robust MPC for linear parameter varying systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1717–1751, Oct. 2022. doi: 10.1109/JAS.2022.105605 
For constrained linear parameter varying (LPV) systems, this survey comprehensively reviews the literatures on output feedback robust model predictive control (OFRMPC) over the past two decades from the aspects on motivations, main contributions, and the related techniques. According to the types of state observer systems and scheduling parameters of LPV systems, different kinds of OFRMPC approaches are summarized and compared. The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated. The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given. Key issues on OFRMPC optimizations for LPV systems are discussed. Furthermore, the future research directions on OFRMPC for LPV systems are suggested.
[1] 
Y. Xi and D. Li, Predictive Control: Fundamentals and Developments. Hoboken, NJ: John Wiley & Sons, Inc, 2019.

[2] 
Y. Xi, D. Li, and S. Lin, “Model predictive control–status and challenges,” Acta Automatica Sinica, vol. 39, no. 3, pp. 222–236, 2013. doi: 10.1016/S18741029(13)600245

[3] 
D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000. doi: 10.1016/S00051098(99)002149

[4] 
J. H. Lee, “Model predictive control: Review of the three decades of development,” Int. Journal of Control,Automation and Systems, vol. 9, no. 3, pp. 415–424, 2011. doi: 10.1007/s1255501103006

[5] 
D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014. doi: 10.1016/j.automatica.2014.10.128

[6] 
S. V. Raković and W. S. Levine, Handbook of Model Predictive Control. Springer, Switzerland, 2018.

[7] 
S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to nonlinear MPC: Bridging the gap via the realtime iteration,” Int. Journal of Control, vol. 93, no. 1, pp. 62–80, 2020. doi: 10.1080/00207179.2016.1222553

[8] 
S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003. doi: 10.1016/S09670661(02)001867

[9] 
M. L. Darby and M. Nikolaou, “MPC: Current practice and challenges,” Control Engineering Practice, vol. 20, no. 4, pp. 328–342, 2012. doi: 10.1016/j.conengprac.2011.12.004

[10] 
A. Parisio, E. Rikos, G. Tzamalis, and L. Glielmo, “Use of model predictive control for experimental microgrid optimization,” Applied Energy, vol. 115, pp. 37–46, 2014. doi: 10.1016/j.apenergy.2013.10.027

[11] 
S. Kouro, M. A. Perez, J. Rodriguez, A. M. Llor, and H. A. Young, “Model predictive control: MPC’s role in the evolution of power electronics,” IEEE Industrial Electronics Magazine, vol. 9, no. 4, pp. 8–21, 2015. doi: 10.1109/MIE.2015.2478920

[12] 
S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Industrial Electronics, vol. 64, no. 2, pp. 935–947, 2017. doi: 10.1109/TIE.2016.2625238

[13] 
B. Kouvaritakis and M. Cannon, Model Predictive Control. Switzerland: Springer Int. Publishing, 2016.

[14] 
M. B. Saltik, L. Özkan, J. H. Ludlage, S. Weiland, and P. M. Van den Hof, “An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects,” Journal of Process Control, vol. 61, pp. 77–102, 2018. doi: 10.1016/j.jprocont.2017.10.006

[15] 
G. C. Goodwin, H. Kong, G. Mirzaeva, and M. M. Seron, “Robust model predictive control: Reflections and opportunities,” Journal of Control and Decision, vol. 1, no. 2, pp. 115–148, 2014. doi: 10.1080/23307706.2014.913837

[16] 
C. Hoffmann and H. Werner, “A survey of linear parametervarying control applications validated by experiments or highfidelity simulations,” IEEE Trans. Control Systems Technology, vol. 23, no. 2, pp. 416–433, 2015. doi: 10.1109/TCST.2014.2327584

[17] 
J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Varying Systems With Applications. New York, NY: Springer Science and Business Media, 2012.

[18] 
O. Sename, P. Gaspar, and J. Bokor, Robust Control and Linear Parameter Varying Approaches: Application to Vehicle Dynamics. New York, NY: Springer, 2013.

[19] 
H. S. Abbas, R. Tóth, M. Petreczky, N. Meskin, and J. Mohammadpour, “Embedding of nonlinear systems in a linear parametervarying representation,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 6907–6913, 2014.

[20] 
M. M. Morato, G. Q. B. Tran, G. N. dos Reis, J. E. NormeyRico, and O. Sename, “NMPC through qLPV embedding: A tutorial review of different approaches,” in Proc. 7th IFAC Conf. Nonlinear Model Predictive Control, Bratislava, Slovakia, 2021.

[21] 
J. Hanema, R. Tóth, and M. Lazar, “Stabilizing nonlinear model predictive control using linear parametervarying embeddings and tubes,” IET Control Theory &Applications, vol. 15, no. 10, pp. 1404–1421, 2021.

[22] 
R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss, “State and output feedback nonlinear model predictive control: An overview,” European Journal of Control, vol. 9, no. 2–3, pp. 190–206, 2003.

[23] 
L. Imsland, R. Findeisen, E. Bullinger, F. Allgöwer, and B. A. Foss, “A note on stability, robustness and performance of output feedback nonlinear model predictive control,” Journal of Process Control, vol. 13, no. 7, pp. 633–644, 2003. doi: 10.1016/S09591524(03)000064

[24] 
F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999. doi: 10.1016/S00051098(99)001132

[25] 
F. Blanchini and S. Miani, SetTheoretic Methods in Control. Birkhäuser: Basel, 2008.

[26] 
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, USA, 1994.

[27] 
W. Langson, I. Chryssochoos, S. V. Raković, D. Q. Mayne, “Robust model predictive control using tubes,” Automatica, vol. 40, no. 1, pp. 125–133, 2004. doi: 10.1016/j.automatica.2003.08.009

[28] 
D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–224, 2005. doi: 10.1016/j.automatica.2004.08.019

[29] 
M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996. doi: 10.1016/00051098(96)000635

[30] 
M. M. Morato, J. E. NormeyRico, and O. Sename, “Model predictive control design for linear parameter varying systems: A survey,” Annual Reviews in Control, vol. 49, pp. 64–80, 2020. doi: 10.1016/j.arcontrol.2020.04.016

[31] 
A. Casavola, D. Famularo, and G. Franzè, “A feedback minmax MPC algorithm for LPV systems subject to bounded rates of change of parameters,” IEEE Trans. Automatic Control, vol. 47, no. 7, pp. 1147–1153, 2002. doi: 10.1109/TAC.2002.800662

[32] 
S. Yu, C. Böhm, H. Chen, and F. Allgöwer, “Model predictive control of constrained LPV systems,” Int. Journal of Control, vol. 85, no. 6, pp. 671–683, 2012. doi: 10.1080/00207179.2012.661878

[33] 
Y. Lu and Y. Arkun, “Quasiminmax MPC algorithm for LPV systems,” Automatica, vol. 36, no. 4, pp. 527–540, 2000. doi: 10.1016/S00051098(99)001764

[34] 
D. Li and Y. Xi, “The feeback robust MPC for LPV systems with bounded rates of parameters changes,” IEEE Trans. Automation Control, vol. 55, no. 2, pp. 503–507, 2010. doi: 10.1109/TAC.2009.2037464

[35] 
P. Zheng, D. Li, Y. Xi, and J. Zhang, “Improved model prediction and RMPC design for LPV systems with bounded parameter changes,” Automatica, vol. 49, no. 12, pp. 3695–3699, 2013. doi: 10.1016/j.automatica.2013.09.024

[36] 
D. He, H. Huang, and Q. Chen, “Quasiminmax MPC for constrained nonlinear systems with guaranteed inputtostate stability,” Journal of the Franklin Institute, vol. 351, no. 6, pp. 3405–3423, 2014. doi: 10.1016/j.jfranklin.2014.03.006

[37] 
D. R. Ramirez, T. Alamo, E. F. Camacho, “Computational burden reduction in minmax MPC,” Journal of the Franklin Institute, vol. 348, no. 9, pp. 2430–2447, 2011. doi: 10.1016/j.jfranklin.2011.07.008

[38] 
Z. Wan and M. V. Kothare, “An efficient offline formulation of robust model predictive control using linear matrix inequalities,” Automatica, vol. 39, no. 5, pp. 837–846, 2003. doi: 10.1016/S00051098(02)001747

[39] 
B. Ding, Y. Xi, and M. T. Cychowski, T. O’Mahony, “Improving offline approach to robust MPC basedon nominal performance cost,” Automatica, vol. 43, no. 1, pp. 158–163, 2007. doi: 10.1016/j.automatica.2006.07.022

[40] 
P. Bumroongsri and S. Kheawhom, “An ellipsoidal offline model predictive control strategy for linear parameter varying systems with applications in chemical processes,” Systems &Control Letters, vol. 61, no. 3, pp. 435–442, 2012.

[41] 
T. Besselmann, J. Lofberg, and M. Morari, “Explicit MPC for LPV systems: Stability and optimality,” Int. Journal of Control, vol. 57, no. 9, pp. 2322–2332, 2012.

[42] 
H. S. Abbas, G. Männel, C. H. né Hoffmann, and P. Rostalski, “Tubebased model predictive control for linear parametervarying systems with bounded rate of parameter variation,” Automatica, vol. 107, pp. 21–28, 2019. doi: 10.1016/j.automatica.2019.04.046

[43] 
J. Hanema, M. Lazar, and R. Tóth, “Heterogeneously parameterized tube model predictive control for LPV systems,” Automatica, vol. 111, Art. no. 108622, 2020.

[44] 
R. Heydari and M. Farrokhi, “Robust tubebased model predictive control of LPV systems subject to adjustable additive disturbance set,” Automatica, vol. 129, Art. no. 109672, 2021.

[45] 
Q. T. Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining convexconcave decompositions and linearization approaches for solving BMIs, with application to static output feedback,” IEEE Trans. Automatic Control, vol. 57, no. 6, pp. 1377–1390, 2012. doi: 10.1109/TAC.2011.2176154

[46] 
S. Kanev, C. Scherer, M. Verhaegen, and B. De Schutter, “Robust outputfeedback controller design via local BMI optimization,” Automatica, vol. 40, no. 7, pp. 1115–1127, 2004. doi: 10.1016/j.automatica.2004.01.028

[47] 
F. Schweppe, “Recursive state estimation: Unknown but bounded errors and system inputs,” IEEE Trans. Automatic Control, vol. 13, no. 1, pp. 22–28, 1968. doi: 10.1109/TAC.1968.1098790

[48] 
D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer, “Robust output feedback model predictive control of constrained linear systems,” Automatica, vol. 42, no. 7, pp. 1217–1222, 2006. doi: 10.1016/j.automatica.2006.03.005

[49] 
D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer, “Robust output feedback model predictive control of constrained linear systems: Time varying case,” Automatica, vol. 45, no. 9, pp. 2082–2087, 2009. doi: 10.1016/j.automatica.2009.05.009

[50] 
S. Subramanian, S. Lucia, and S. Engell, “A novel tubebased output feedback MPC for constrained linear systems,” in Proc. American Control Conf., Seattle, USA, pp. 3060–3065, 2017.

[51] 
J. Lorenzetti and M. Pavone, “A simple and efficient tubebased robust output feedback model predictive control scheme,” in Proc. European Control Conf., pp. 1775–1782, Saint Petersburg, Russia, 2020.

[52] 
Y. Su, K. Tan, and T. H. Lee, “Tube based quasiminmax output feedback MPC for LPV systems,” IFAC Proceedings Volumes, vol. 45, no. 15, pp. 186–191, 2012. doi: 10.3182/201207104SG2026.00010

[53] 
C. Hu, X. Zhou, Y. Ren, and Y. Tao, “Output feedback polytopic LPV tubeRMPC control for airbreathing hypersonic vehicles,” Int. Journal of Modelling Identification and Control, vol. 28, no. 4, pp. 336–348, 2017. doi: 10.1504/IJMIC.2017.087052

[54] 
X. Ping, J. Yao, B. Ding, P. Wang, and Z. Li, “Tubebased output feedback robust MPC for LPV systems with scaled terminal constraint sets,” IEEE Trans. Cybernetics, vol. 52, no. 8, pp. 7563–7576, 2022.

[55] 
B. Ding, X. Tang, and J. Hu, “A summary of dynamic output feedback robust MPC for linear polytopic uncertainty model with bounded disturbance,” Mathematical Problems in Engineering, Art. no. 3830724, 2020.

[56] 
B. Ding and L. Xie, “Robust model predictive control via dynamic output feedback”, in Proc. IEEE 7th World Congr. Intelligent Control and Automation, Chongqing, China, pp. 3388–3393, 2008.

[57] 
B. Ding, L. Xie, and F. Xue, “Improving robust model predictive control via dynamic output feedback,” in Proc. Chinese Control and Decision Conf., Guilin, China, pp. 2116–2121, 2009.

[58] 
B. Ding, “Constrained robust model predictive control via parameterdependent dynamic output feedback,” Automatica, vol. 46, no. 9, pp. 1517–1523, 2010. doi: 10.1016/j.automatica.2010.06.014

[59] 
X. Ping, B. Ding, and C. Han, “Dynamic output feedback robust model predictive control,” Acta Automatica Sinica, vol. 38, no. 1, pp. 31–37, 2012. doi: 10.3724/SP.J.1004.2012.00031

[60] 
X. Ping and N. Sun, “Dynamic output feedback robust model predictive control via zonotopic setmembership estimation for constrained quasiLPV systems,” Journal of Applied Mathematics, Art. no. 875850, 2015.

[61] 
B. Ding, X. Ping, and H. Pan, “On dynamic output feedback robust MPC for constrained quasiLPV systems,” Int. Journal of Control, vol. 86, no. 12, pp. 2215–2227, 2013. doi: 10.1080/00207179.2013.809796

[62] 
X. Ping and B. Ding, “Dynamic output feedback robust model predictive control based on ellipsoidal estimation error bound for quasiLPV systems,” in Proc. Chinese Control and Decision Conf., Guiyang, China, pp. 726–731, 2013.

[63] 
B. Ding, B Huang, and F. Xu, “Dynamic output feedback robust model predictive control,” Int. Journal of Systems Science, vol. 42, no. 10, pp. 1669–1682, 2011. doi: 10.1080/00207721003624543

[64] 
J. Hu and B. Ding, “An offline output feedback MPC strategy for nonlinear systems represented by quasiLPV model,” IFACPapersOnLine, vol. 51, no. 20, pp. 66–71, 2018. doi: 10.1016/j.ifacol.2018.10.176

[65] 
A. Alessandri, M. Baglietto, and G. Battistelli, “On estimation error bounds for recedinghorizon filters using quadratic boundedness,” IEEE Trans. Automatic Control, vol. 49, no. 8, pp. 1350–1355, 2004. doi: 10.1109/TAC.2004.832652

[66] 
A. Alexandria, M. Baglietto, and G. Battistelli, “Design of state estimators for uncertain linear systems using quadratic boundedness,” Automatica, vol. 42, no. 3, pp. 497–502, 2006. doi: 10.1016/j.automatica.2005.10.013

[67] 
T. Alamo, J. M. Bravo, and E. F. Camacho, “Guaranteed state estimation by zonotopes,” Automatica, vol. 41, no. 6, pp. 1035–1043, 2005. doi: 10.1016/j.automatica.2004.12.008

[68] 
B. Ding and H. Pan, “Dynamic output feedbackpredictive control of a TakagiSugeno model with bounded disturbance,” IEEE Trans. Fuzzy Systems, vol. 25, no. 3, pp. 653–667, 2017. doi: 10.1109/TFUZZ.2016.2574907

[69] 
K. Derinkuyu and M. C. Pınar, “On the Sprocedure and some variants,” Mathematical Methods of Operations Research, vol. 64, no. 1, pp. 55–77, 2006. doi: 10.1007/s0018600600708

[70] 
J. Hu and B. Ding, “A periodic approach to dynamic output feedback MPC for quasiLPV model,” IEEE Trans. Automatic Control, vol. 66, no. 5, pp. 2257–2264, 2021. doi: 10.1109/TAC.2020.3002162

[71] 
W. Jiang, H. Wang, J. Lu, G. Cai, and W. Qin, “Synchronization for chaotic systems via mixedobjective dynamic output feedback robust model predictive control,” Journal of the Franklin Institute, vol. 354, no. 12, pp. 4838–4860, 2017. doi: 10.1016/j.jfranklin.2017.05.007

[72] 
B. Ding, “Dynamic output feedback MPC for LPV systems via nearoptimal solutions,” in Proc. Chinese Control Conf., Yantai, China, pp. 3340–3345, 2011.

[73] 
B. Ding, “Dynamic output feedback MPC for LPV systems via iterative optimization,” in Proc. Chinese Control and Decision Conf., Mianyang, China, pp. 3280–3285, 2011.

[74] 
X. Ping and B. Ding, “Dynamic output feedback robust model predictive control based on ellipsoidal estimation error bound,” Acta Automatica Sinica, vol. 40, no. 2, pp. 219–226, 2014.

[75] 
X. Ping, Z. Li, and A. AlAhmari, “Dynamic output feedback robust MPC for LPV systems subject to input saturation and bounded disturbance,” Int. Journal of Control Automation and Systems, vol. 15, no. 3, pp. 976–985, 2017. doi: 10.1007/s125550160004z

[76] 
B. Ding and H. Pan, “Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance,” Int. Journal of Control, vol. 89, no. 8, pp. 1554–1571, 2016. doi: 10.1080/00207179.2016.1138144

[77] 
B. Ding, Y. Xi, and X. Ping, “A comparative study on output feedback MPC for constrained LPV systems,” in Proc. Chinese Control Conf., Hefei, China, pp. 4189–4194, 2012.

[78] 
B. Ding, Y. Xi, and X. Ping, “A general reformulation of output feedback MPC for constrained LPV systems,” in Proc. Chinese Control Conf., Hefei, China, pp. 4195–4200, 2012.

[79] 
B. Ding, J. Hu, X. Tang, and J. Wang, “A synthesis approach to output feedback MPC for LPV model with bounded disturbance,” IEEE Access, vol. 8, pp. 228337–228348, 2020. doi: 10.1109/ACCESS.2020.3042654

[80] 
J. Hu and B. Ding, “An efficient offline implementation for output feedback minmax MPC,” Int. Journal of Robust and Nonlinear Control, vol. 29, no. 2, pp. 492–506, 2019. doi: 10.1002/rnc.4401

[81] 
B. Ding, J. Dong, and J. Hu, “Output feedback robust MPC using general polyhedral and ellipsoidal true state bounds for LPV model with bounded disturbance,” Int. Journal of Systems Science, vol. 50, no. 3, pp. 625–637, 2019. doi: 10.1080/00207721.2019.1567862

[82] 
B. Ding, Y. Xi, X. Ping, and T. Zou, “Dynamic output feedback robust MPC with relaxed constraint handling for LPV system with bounded disturbance,” in Proc. 11th World Congr. Intelligent Control and Automation, Shenyang, China, pp. 2624–2629, 2014.

[83] 
B. Ding and H. Pan, “Output feedback robust model predictive control with unmeasurable model parameters and bounded disturbance,” Chinese Journal of Chemical Engineering, vol. 24, no. 10, pp. 1431–1441, 2016. doi: 10.1016/j.cjche.2016.05.041

[84] 
J. Hu and B. Ding, “Dynamic output feedback robust MPC with convex optimisation for system with polytopic uncertainty,” Int. Journal of Systems Science, vol. 50, no. 4, pp. 739–748, 2019. doi: 10.1080/00207721.2019.1568606

[85] 
X. Ping, S. Yang, B. Ding, T. Raïssi, and Z. Li, “A convexity approach to dynamic output feedback robust MPC for LPV systems with bounded disturbances,” Int. Journal of Control,Automation and Systems, vol. 18, no. 6, pp. 1378–1391, 2020. doi: 10.1007/s1255501900892

[86] 
D. Li and Y. Xi, “Robust model predictive control based on a category of dynamic output feedback,” in Proc. Asian Control Conf., Taiwan, China, pp. 994–999, 2011.

[87] 
D. Li, Y. Xi, and F. Gao, “Synthesis of dynamic output feedback RMPC with saturated inputs,” Automatica, vol. 49, no. 4, pp. 949–954, 2013. doi: 10.1016/j.automatica.2013.01.010

[88] 
X. Ping, P. Wang, and L. Hong, “An improved offline dynamic output feedback robust MPC design for ellipsoidal estimation error sets,” in Proc. Chinese Control Conf., Chengdu, China, pp. 4265–4270, 2016.

[89] 
X. Ping, N. Sun, and B. Ding, “An offline approach to dynamic output feedback robust model predictive control with ellipsoidal estimation error set,” in Proc. Chinese Control and Decision Conf., Changsha, China, pp. 1078–1083, 2014.

[90] 
B. Ding and L. Xie, “Dynamic output feedback robust model predictive control with guaranteed quadratic boundedness,” in Proc. 48th IEEE Conf. Decision and Control, Shanghai, China, pp. 8034–8039, 2009.

[91] 
B. Ding, “New formulation of dynamic output feedback robust model predictive control with guaranteed quadratic boundedness,” Asian Journal of Control, vol. 15, no. 1, pp. 302–309, 2013. doi: 10.1002/asjc.496

[92] 
X. Ping and B. Ding, “An offline approach to dynamic output feedback robust model predictive control,” Acta Automatica Sinica, vol. 39, no. 6, pp. 790–798, 2013.

[93] 
X. Ping and B. Ding, “Offline approach to dynamic output feedback robust model predictive control,” Systems and Control Letters, vol. 62, no. 11, pp. 1038–1048, 2013. doi: 10.1016/j.sysconle.2013.07.011

[94] 
B. Ding, C. Gao, and X. Ping, “Dynamic output feedback robust MPC using general polyhedral state bounds for the polytopic uncertain system with bounded disturbance,” Asian Journal of Control, vol. 18, no. 2, pp. 699–708, 2016. doi: 10.1002/asjc.1082

[95] 
X. Ping and N. Sun, “Dynamic output feedback robust MPC via zonotopebased setmembership estimation for general LPV systems,” in Proc. Chinese Control Conf., Hangzhou, China, pp. 4095–4100. 2015.

[96] 
B. Ding, Y. Xi, M. T. Cychowski, and T. O’Mahony, “A synthesis approach for output feedback robust constrained model predictive control,” Automatica, vol. 44, no. 1, pp. 258–264, 2008. doi: 10.1016/j.automatica.2007.04.005

[97] 
L. El Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity linearization algorithm for static outputfeedback and related problems,” IEEE Trans. Automatic Control, vol. 42, no. 8, pp. 1171–1176, 1997. doi: 10.1109/9.618250

[98] 
A. Bemporad and A. Garulli, “Outputfeedback predictive control of constrained linear systems via setmembership state estimation,” Int. Journal of Control, vol. 73, no. 8, pp. 655–665, 2000. doi: 10.1080/002071700403420

[99] 
T. Shi, Z. Wu, and H. Su, “Improved dynamic output feedback RMPC for linear uncertain systems with input constraints,” Int. Journal of Robust and Nonlinear Control, vol. 26, no. 12, pp. 2729–2742, 2016. doi: 10.1002/rnc.3484

[100] 
J. R. Colombo Junior, R. K. H. Galvão, and E. Assuncao, “A new OFRMPC formulation with online synthesis of the dynamic output feedback controller,” Int. Journal of Robust and Nonlinear Control, vol. 27, no. 17, pp. 3921–3936, 2017.

[101] 
H. Kheloufi, F. Bedouhene, A. Zemouche, and A. Alessandri, “Observerbased stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions,” Int. Journal of Control, vol. 88, no. 6, pp. 1189–1200, 2015. doi: 10.1080/00207179.2014.999258

[102] 
J. Hu, “Dynamic output feedback MPC of polytopic uncertain systems: Efficient LMI conditions,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2568–2572, 2021. doi: 10.1109/TCSII.2021.3053113

[103] 
J. Hu and B. Ding, “Offline output feedback robust MPC with general polyhedral and ellipsoidal true state bound,” Journal of the Franklin Institute, vol. 357, no. 8, pp. 4505–4523, 2020. doi: 10.1016/j.jfranklin.2020.01.027

[104] 
B. Ding, P. Wang, and J. Hu, “Dynamic output feedback robust MPC with one free control move for LPV model with bounded disturbance,” Asian Journal of Control, vol. 20, no. 2, pp. 755–767, 2018. doi: 10.1002/asjc.1617

[105] 
X. Ping, “Output feedback robust MPC based on offline observer for LPV systems via quadratic boundedness,” Asian Journal of Control, vol. 19, no. 4, pp. 1641–1653, 2017. doi: 10.1002/asjc.1469

[106] 
W. Yang, J. Gao, G. Feng, and T. Zhang, “An optimal approach to outputfeedback robust model predictive control of LPV systems with disturbances,” Int. Journal of Robust and Nonlinear Control, vol. 26, no. 15, pp. 3253–3273, 2016. doi: 10.1002/rnc.3505

[107] 
X. Ping, P. Wang, and J. Zhang, “A multistep output feedback robust MPC approach for LPV systems with bounded parameter changes and disturbance,” Int. Journal of Control Automation and Systems, vol. 16, no. 5, pp. 2157–2168, 2018. doi: 10.1007/s1255501706300

[108] 
W. Jiang, H. Wang, J. Lu, W. Qin, and G. Cai, “Synthesis of mixed objective output feedback robust model predictive control,” Asian Journal of Control, vol. 19, no. 6, pp. 1977–1990, 2017. doi: 10.1002/asjc.1494

[109] 
B. Ding and H. Pan, “Output feedback robust MPC with one free control move for the linear polytopic uncertain system with bounded disturbance,” Automatica, vol. 50, no. 11, pp. 2929–2935, 2014. doi: 10.1016/j.automatica.2014.10.021

[110] 
Q. Qiu, F. Yang, Y. Zhu, and E. Mousavinejad, “Output feedback model predictive control based on setmembership state estimation,” IET Control Theory and Applications, vol. 14, no. 4, pp. 558–567, 2020. doi: 10.1049/ietcta.2019.0881

[111] 
M. H. Zibaeenejad and V. J. Majd, “An output feedback robust model predictive controller design based on quasimin max algorithm,” in Proc. American Control Conf., Louis, USA, pp. 4874–4879, 2009.

[112] 
J. Gao, W. Yang, and T. Zhang, “Output feedback model predictive control of linear parameter varying systems,” in Proc. ASME Int. Mechanical Engineering Congress and Exposition, vol. 46476, American Society of Mechanical Engineers, Montreal, Canada, 2014.

[113] 
J. H. Park, T. H. Kim, and T. Sugie, “Output feedback model predictive control for LPV systems based on quasiminmax algorithm,” Automatica, vol. 47, no. 9, pp. 2052–2058, 2011. doi: 10.1016/j.automatica.2011.06.015

[114] 
T. H. Kim and H. W. Lee, “Quasiminmax outputfeedback model predictive control for LPV systems with input saturation,” Int. Journal of Control Automation and Systems, vol. 15, no. 3, pp. 1069–1076, 2017. doi: 10.1007/s125550160378y

[115] 
X. Ping, S. Yang, B. Ding, Raïssi Tarek, and Z. Li, “Observerbased output feedback robust MPC via zonotopic setmembership state estimation for LPV systems with bounded disturbances and noises,” Journal of the Franklin Institute, vol. 357, no. 11, pp. 7368–7398, 2020. doi: 10.1016/j.jfranklin.2020.05.014

[116] 
X. Ping, S. Yang, P. Wang, and Z. Li, “An observerbased output feedback robust MPC approach for constrained LPV systems with bounded disturbance and noise,” Int. Journal of Robust and Nonlinear Control, vol. 30, no. 4, pp. 1512–1533, 2020. doi: 10.1002/rnc.4836

[117] 
X. Ping, X. Wang, T. Lin, B. Ding, and A. Polyakov, “An offline approach for output feedback robust model predictive control,” Journal of the Franklin Institute, vol. 358, no. 17, pp. 9263–9287, 2021. doi: 10.1016/j.jfranklin.2021.09.006

[118] 
X. Ping, S. Yang, Y. Xiao, B. Ding, and Z. Li, “Interval state estimationbased robust model predictive control for linear parameter varying systems,” Int. Journal of Robust and Nonlinear Control, vol. 31, no. 15, pp. 7026–7052, 2021. doi: 10.1002/rnc.5676

[119] 
Y. Su and K. Tan, “Comments on output feedback model predictive control for LPV systems based on quasiminmax algorithm,” Automatica, vol. 48, no. 9, pp. 2385–2385, 2012. doi: 10.1016/j.automatica.2012.06.100

[120] 
S. Liu, Y. Song, G. Wei, and X. Huang, “RMPCbased security problem for polytopic uncertain system subject to deception attacks and persistent disturbances,” IET Control Theory and Applications, vol. 11, no. 10, pp. 1611–1618, 2017. doi: 10.1049/ietcta.2017.0153

[121] 
J. Wang, B. Ding, and J. Hu, “Security control for LPV system with deception attacks via model predictive control: A dynamic output feedback approach,” IEEE Trans. Automatic Control, vol. 66, no. 2, pp. 760–767, 2021. doi: 10.1109/TAC.2020.2984221

[122] 
Z. Wan and M. V. Kothare, “Robust output feedback model predictive control using offline linear matrix inequalities,” Journal of Process Control, vol. 12, no. 7, pp. 763–774, 2002. doi: 10.1016/S09591524(02)000033

[123] 
M. H. Asemani, V. J. Majd, and M. Z. Nejad, “An improved offline approach for output feedback robust model predictive control,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10886–10891, 2008. doi: 10.3182/200807065KR1001.01844

[124] 
B. Ding and T. Zou, “Synthesizing output feedback predictive control for constrained uncertain timevarying discrete systems,” Acta Automatica Sinica, vol. 33, no. 1, pp. 78–83, 2007. doi: 10.1360/aas0070078

[125] 
S. Liu, Y. Song, G. Wei, D. Ding, and Y. Liu, “Eventtriggered dynamic output feedback RMPC for polytopic systems with redundant channels: Inputtostate stability,” Journal of the Franklin Institute, vol. 354, no. 7, pp. 2871–2892, 2017. doi: 10.1016/j.jfranklin.2017.02.008

[126] 
J. S. Lim, S. Y. Son, and Y. I. Lee, “Receding horizon output feedback control for constrained uncertain systems using periodic invariance,” Int. Journal of Control, vol. 83, no. 6, pp. 1277–1286, 2010. doi: 10.1080/00207171003682689

[127] 
K. Zhu, Y. Song, S. Zhang, and Z. Zhong, “Nonfragile observerbased output feedback control for polytopic uncertain system under distributed model predictive control approach,” Int. Journal of Systems Science, vol. 48, no. 9, pp. 1891–1901, 2017. doi: 10.1080/00207721.2017.1295329

[128] 
R. Tóth, H. S. Abbas, and H. Werner, “On the statespace realization of LPV inputoutput models: Practical approaches,” IEEE Trans. Control Systems Technology, vol. 20, no. 1, pp. 139–153, 2012.

[129] 
B. Ding, “Output feedback robust MPC basedon direct inputoutput model,” in Proc. Chinese Control and Decision Conf., Taiyuan, China, pp. 86–91, 2012.

[130] 
B. Ding and T. Zou, “A synthesis approach for output feedback robust model predictive control basedon inputoutput model,” Journal of Process Control, vol. 24, no. 3, pp. 60–72, 2014. doi: 10.1016/j.jprocont.2013.12.006

[131] 
X. Ping and B. Qian, “Output feedback robust MPC subject to input saturation based on inputoutput model,” in Proc. Chinese Control and Decision Conf., Yinchuan, China, pp. 741–745, 2016.

[132] 
T. Shi, R. Lu, and Q. Lv, “Robust static output feedback infinite horizon RMPC for linear uncertain systems,” Journal of the Franklin Institute, vol. 353, no. 4, pp. 891–902, 2016. doi: 10.1016/j.jfranklin.2016.01.012

[133] 
S. M. Lee and J. H. Park, “Output feedback model predictive control for LPV systems using parameterdependent Lyapunov function,” Applied Mathematics and Computation, vol. 190, no. 1, pp. 671–676, 2007. doi: 10.1016/j.amc.2007.01.061

[134] 
Q. Cheng, D. MuñozCarpintero, M. Cannon, and B. Kouvaritakis, “Efficient robust output feedback MPC,” in Proc. Chinese Control Conf., Xi’an China, pp. 4149–4154, 2013.

[135] 
A. D. R. de Souza, D. Efimov, and T. Raïssi, “Robust output feedback MPC for LPV systems using interval observers,” IEEE Trans. Automatic Control, vol. 67, no. 6, pp. 3188–3195, 2022.

[136] 
A. D. R. de Souza, D. Efimov, T. Raïssi, and X. Ping, “Robust output feedback model predictive control for constrained linear systems via interval observers,” Automatica, vol.135, Art. no. 109951, 2022.

[137] 
A. R. de Souza, D. Efimov, T. Raïssi, and X. Ping, “Robust output feedback MPC: An intervalobserver approach,” in Proc. IEEE Conf. Decision and Control, Jeju Island, Korea, pp. 2529–2534, 2020.

[138] 
D. Rotondo, V. Puig, F. Nejjari, and M. Witczak, “Automated generation and comparison of TakagiSugeno and polytopic quasiLPV models,” Fuzzy Sets and Systems, vol. 277, pp. 44–64, 2015. doi: 10.1016/j.fss.2015.02.002

[139] 
H. Li, L. Wu, H. K. Lam, and Y. Gao, Analysis and Synthesis for Interval Type2 FuzzyModelBased Systems. Singapore: Springer, 2016.

[140] 
A. Casavola, D. Famularo, and G. Franzè, “Normbounded robust MPC strategies for constrained control of nonlinear systems,” IEE ProceedingsControl Theory and Applications, vol. 152, no. 3, pp. 285–295, 2005. doi: 10.1049/ipcta:20041307

[141] 
B. Ding, “Dynamic output feedback predictive control for nonlinear systems represented by a TakagiSugeno model,” IEEE Trans. Fuzzy Systems, vol. 19, no. 5, pp. 831–843, 2011. doi: 10.1109/TFUZZ.2011.2147320

[142] 
B. Ding and X. Ping, “Output feedback predictive control with one free control move for nonlinear systems represented by a TakagiSugeno model,” IEEE Trans. Fuzzy Systems, vol. 22, no. 2, pp. 249–263, 2014. doi: 10.1109/TFUZZ.2013.2251637

[143] 
X. Tang, L. Deng, N. Liu, S. Yang, and J. Yu, “Observerbased output feedback MPC for TS fuzzy system with data loss and bounded disturbance,” IEEE Trans. Cybernetics, vol. 49, no. 6, pp. 2119–2132, 2019. doi: 10.1109/TCYB.2018.2820138

[144] 
J. Hu and B. Ding, “Dynamic output feedback predictive control with one free control move for the TakagiSugeno model with bounded disturbance,” IEEE Trans. Fuzzy Systems, vol. 27, no. 3, pp. 462–473, 2019. doi: 10.1109/TFUZZ.2018.2859905

[145] 
X. Ping, J. Yao, B. Ding, P. Wang, and Z. Li, “Timevarying tubebased output feedback robust MPC for TS fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 30, no. 5, pp. 1460–1474, 2022.

[146] 
X. Tang and L. Deng, “Multistep output feedback predictive control for uncertain discretetime TS fuzzy system via eventtriggered scheme,” Automatica, vol. 107, pp. 362–370, 2019. doi: 10.1016/j.automatica.2019.05.057

[147] 
J. Hu and B. Ding, “Output feedback model predictive control with steadystate target calculation for fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 28, no. 12, pp. 3442–3449, 2020. doi: 10.1109/TFUZZ.2019.2950885

[148] 
X. Tang, L. Deng, J. Yu, and H. Qu, “Output feedback predictive control of interval type2 TS fuzzy systems with Markovian packet loss,” IEEE Trans. Fuzzy Systems, vol. 26, no. 4, pp. 2450–2459, 2018. doi: 10.1109/TFUZZ.2017.2771502

[149] 
F. Liu, C. Wang, and Q. Geng, “Observerbased MPC for NCS with actuator saturation and DoS attacks via interval type2 TS fuzzy model,” IET Control Theory &Applications, vol. 14, no. 20, pp. 3537–3546, 2020.

[150] 
X. Tang, L. Dend, J. Yu, and H. Qu, “Output feedback model predictive control for interval type2 TS fuzzy networked control systems,” Acta Automatica Sinica, vol. 45, no. 3, pp. 604–616, 2019.

[151] 
X. Tang, L. Deng, and H. Qu, “Predictive control for networked interval type2 TS fuzzy system via an eventtriggered dynamic output feedback scheme,” IEEE Trans. Fuzzy Systems, vol. 27, no. 8, pp. 1573–1586, 2019. doi: 10.1109/TFUZZ.2018.2883370

[152] 
X. Ping and W. Pedrycz, “Output feedback model predictive control of interval type2 TS fuzzy system with bounded disturbance,” IEEE Trans. Fuzzy Systems, vol. 28, no. 1, pp. 148–162, 2020. doi: 10.1109/TFUZZ.2019.2900844

[153] 
D. Famularo and G. Franzè, “Output feedback model predictive control of uncertain normbounded linear systems,” Int. Journal of Robust Nonlinear Control, vol. 21, no. 8, pp. 838–862, 2011. doi: 10.1002/rnc.1629

[154] 
G. Franzè, M. Mattei, L. Ollio, and V. Scordamaglia, “A robust constrained model predictive control scheme for normbounded uncertain systems with partial state measurements,” Int. Journal of Robust and Nonlinear Control, vol. 29, no. 17, pp. 6105–6125, 2019. doi: 10.1002/rnc.4721

[155] 
J. Yang, B. Ding, and H. Pan, “Output feedback robust MPC for timevarying system with normbounded model parametric uncertainty and disturbance,” in Proc. Chinese Control Conf., Chengdu, China, pp. 4330–4335, 2016.

[156] 
J. Yang, Y. Cai, and B. Ding, “Robust output feedback model predictive control for systems with normbounded uncertainty: An LMI approach,” IEEE Access, vol. 7, pp. 183869–183876, 2019. doi: 10.1109/ACCESS.2019.2955380

[157] 
J. Hu and B. Ding, “Output feedback robust MPC for linear systems with normbounded model uncertainty and disturbance,” Automatica, vol. 108, Art. no. 108489, 2019.

[158] 
J. Hu, B. Ding, Y. Wang, J. Zhao, Z. Xu, T. Zou, and X. Ping, “An effcient iterative approach for dynamic output feedback robust model predictive control,” in Proc. Asian Control Conf., Kitakyushu, Japan, pp. 1283–1288, 2019.

[159] 
J. Hu and B. Ding, “Output feedback robust MPC of uncertain normbounded linear systems with disturbance,” Int. Journal of Control, vol. 94, no. 9, pp. 2388–2395, 2021. doi: 10.1080/00207179.2019.1707290

[160] 
A. Sala and C. Ariño, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,” Fuzzy Sets and Systems, vol. 158, no. 24, pp. 2671–2686, 2007. doi: 10.1016/j.fss.2007.06.016

[161] 
A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal toolbox (ET),” in Proc. IEEE Conf. Decision and Control, San Diego, USA, pp. 1498–1503, 2006.

[162] 
X. Chang, Z. Li, and J. H. Park, “Fuzzy generalized H_{2} filtering for nonlinear discretetime systems with measurement quantization,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 48, no. 12, pp. 2419–2430, 2018. doi: 10.1109/TSMC.2017.2743012

[163] 
J. Hu and B. Ding, “Onestep ahead robust MPC for LPV model with bounded disturbance,” European Journal of Control, vol. 52, pp. 59–66, 2020. doi: 10.1016/j.ejcon.2019.09.004

[164] 
P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox for Use With MATLAB, User’s Guide. The Math Works Inc, Natick, MA, USA, 1995.

[165] 
J. C. Geromel, P. Colaneri, and P. Bolzern, “Differential linear matrix inequality in optimal sampleddata control,” Automatica, vol. 100, pp. 289–298, 2019. doi: 10.1016/j.automatica.2018.11.021

[166] 
F. A. C. C. Fontes, “Discontinuous feedbacks, discontinuous optimal controls, and continuoustime model predictive control,” Int. Journal of Robust and Nonlinear Control, vol. 13, no. 3–4, pp. 191–209, 2003. doi: 10.1002/rnc.813

[167] 
J. C. Geromel, “Sampleddata model predictive control,” IEEE Trans. Automatic Control, vol. 67, no. 5, pp. 2466–2472, 2022.

[168] 
W. Esterhuizen, K. Worthmann, and S. Streif, “Recursive feasibility of continuoustime model predictive control without stabilising constraints,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 265–270, 2021. doi: 10.1109/LCSYS.2020.3001514

[169] 
T. W. Nguyen, I. V. Kolmanovsky, and D. S. Bernstein, “Sampleddata outputfeedback model predictive control of nonlinear plants using online linear system identification,” in Proc. American Control Conf., New Orleans, USA, pp. 4692–4697, 2021.

[170] 
A. H. K. Palmeira, J. M. G. da Silva Jr, J. V. Flores, and A. Seuret, “Aperiodic sampleddata MPC strategy for LPV systems,” Journal of the Franklin Institute, vol. 359, no. 2, pp. 786–815, 2022. doi: 10.1016/j.jfranklin.2021.03.031

[171] 
S. Mate, H. Kodamana, S. Bhartiya, and P. S. V. Nataraj, “A stabilizing suboptimal model predictive control for quasilinear parameter varying systems,” IEEE Control Systems Letters, vol. 4, no. 2, pp. 402–407, 2020. doi: 10.1109/LCSYS.2019.2937921

[172] 
T. Shi and H. Su, “Sampleddata MPC for LPV systems with input saturation,” IET Control Theory &Applications, vol. 8, no. 17, pp. 1781–1788, 2014.

[173] 
M. Kögel and R. Findeisen, “Sampleddata, output feedback predictive control of uncertain, nonlinear systems,” IFACPapersOnLine, vol. 49, no. 18, pp. 47–52, 2016. doi: 10.1016/j.ifacol.2016.10.138

[174] 
D. Mayne, “Robust and stochastic model predictive control: Are we going in the right direction?” Annual Reviews in Control, vol. 41, pp. 184–192, 2016. doi: 10.1016/j.arcontrol.2016.04.006

[175] 
A. Mesbah, “Stochastic model predictive control: An overview and perspectives for future research,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 30–44, 2016. doi: 10.1109/MCS.2016.2602087

[176] 
G. C. Calafiore and L. Fagiano, “Stochastic model predictive control of LPV systems via scenario optimization,” Automatica, vol. 49, no. 6, pp. 1861–1866, 2013. doi: 10.1016/j.automatica.2013.02.060

[177] 
S. Chitraganti, R. Tóth, N. Meskin, and J. Mohammadpour, “Stochastic model predictive control for LPV systems,” in Proc. American Control Conf., Seattle, USA, pp. 5654–5659, 2017.

[178] 
M. Cannon, Q. Cheng, B. Kouvaritakis, and S. V. Raković, “Stochastic tube MPC with state estimation,” Automatica, vol. 48, no. 3, pp. 536–541, 2012. doi: 10.1016/j.automatica.2011.08.058

[179] 
M. Farina, L. Giulioni, L. Magni, and R. Scattolini, “An approach to outputfeedback MPC of stochastic linear discretetime systems,” Automatica, vol. 55, pp. 140–149, 2015. doi: 10.1016/j.automatica.2015.02.039

[180] 
C. Mark and S. Liu, “A stochastic outputfeedback MPC scheme for distributed systems,” in Proc. American Control Conf., Denver, USA, pp. 1937–1942, 2020.

[181] 
J. Hanema, Anticipative Model Predictive Control for Linear ParameterVarying Systems. Ph.D. dissertation, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2018.

[182] 
J. Hanema, R. Tóth, and M. Lazar, “Tubebased anticipative model predictive control for linear parametervarying systems,” in Proc. IEEE Conf. Decision and Control, Las Vegas, USA, pp. 1458–1463, 2016.

[183] 
T. Peschke and D. Görges, “Tubebased anticipative robust MPC for systems with multiplicative uncertainty,” IFACPapersOnLine, vol. 53, no. 2, pp. 7091–7096, 2020. doi: 10.1016/j.ifacol.2020.12.463

[184] 
Z. Hou and Z. Wang, “From modelbased control to datadriven control: Survey, classification and perspective,” Information Sciences, vol. 235, pp. 3–35, 2013. doi: 10.1016/j.ins.2012.07.014

[185] 
C. De Persis and P. Tesi, “Formulas for datadriven control: Stabilization, optimality, and robustness,” IEEE Trans. Automatic Control, vol. 65, no. 3, pp. 909–924, 2020. doi: 10.1109/TAC.2019.2959924

[186] 
J. Coulson, J. Lygeros, and F. Dörfler, “Dataenabled predictive control: In the shallows of the DeePC,” in Proc. European Control Conf., Naples, Italy, pp. 307–312, 2019.

[187] 
J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Datadriven model predictive control with stability and robustness guarantees,” IEEE Trans. Automatic Control, vol. 66, no. 4, pp. 1702–1717, 2021. doi: 10.1109/TAC.2020.3000182

[188] 
D. Gidon, H. S. Abbas, A. D. Bonzanini, D. B. Graves, J. M. Velni, and A. Mesbah, “Datadriven LPV model predictive control of a cold atmospheric plasma jet for biomaterials processing,” Control Engineering Practice, vol. 109, Art. no. 104725, 2021.

[189] 
P. S. G. Cisneros, A. Datar, P. Göttsch, and H. Werner, “Datadriven quasiLPV model predictive control using Koopman operator techniques,” IFACPapersOnLine, vol. 53, no. 2, pp. 6062–6068, 2020. doi: 10.1016/j.ifacol.2020.12.1676

[190] 
C. Verhoek, H. S. Abbas, R. Tóth, and S. Haesaert, “Datadriven predictive control for linear parametervarying systems,” IFACPapersOnLine, vol. 54, no. 8, pp. 101–108, 2021. doi: 10.1016/j.ifacol.2021.08.588

[191] 
K. Zhang and Y. Shi, “Adaptive model predictive control for a class of constrained linear systems with parametric uncertainties,” Automatica, vol. 117, Art. no. 108974, 2020.

[192] 
X. Lu and M. Cannon, “Robust adaptive tube model predictive control,” in Proc. American Control Conf., Philadelphia, USA, pp. 3695–3701, 2019.

[193] 
J. Köhler, E. Andina, R. Soloperto, M. A. Müller, and F. Allgöwer, “Linear robust adaptive model predictive control: Computational complexity and conservatism,” in Proc. IEEE Conf. Decision and Control, Nice, France, pp. 1383–1388, 2019.

[194] 
M. Lorenzen, M. Cannon, and F. Allgöwer, “Robust MPC with recursive model update,” Automatica, vol. 103, pp. 461–471, 2019. doi: 10.1016/j.automatica.2019.02.023

[195] 
J. Köhler, P. Kötting, R. Soloperto, F. Allgöwer, and M. Müller, “A robust adaptive model predictive control framework for nonlinear uncertain systems,” Int. Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8725–8749, 2021. doi: 10.1002/rnc.5147
