A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 5
May  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
K. Shao and J. C. Zheng, “Predefined-time sliding mode control with prescribed convergent region,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 934–936, May 2022. doi: 10.1109/JAS.2022.105575
Citation: K. Shao and J. C. Zheng, “Predefined-time sliding mode control with prescribed convergent region,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 934–936, May 2022. doi: 10.1109/JAS.2022.105575

Predefined-Time Sliding Mode Control with Prescribed Convergent Region

doi: 10.1109/JAS.2022.105575
More Information
  • loading
  • [1]
    Y.-J. Huang, T.-C. Kuo, and S.-H. Chang, “Adaptive sliding-mode control for nonlinear systems with uncertain parameters,” IEEE Trans. Syst. Man Cybern. B,Cybern., vol. 38, no. 2, pp. 534–539, 2008. doi: 10.1109/TSMCB.2007.910740
    [2]
    F. Plestan, Y. Shtessel, V. Brégeault, and A. Poznyak, “New methodologies for adaptive sliding mode control,” Int. J. Control, vol. 83, no. 9, pp. 1907–1919, 2010. doi: 10.1080/00207179.2010.501385
    [3]
    K. Shao, R. Tang, F. Xu, X. Wang, and J. Zheng, “Adaptive sliding mode control for uncertain Euler-Lagrange systems with input saturation,” J. Franklin Institute, vol. 358, no. 16, pp. 8356–8376, 2021. doi: 10.1016/j.jfranklin.2021.08.027
    [4]
    K. Shao, J. Zheng, H. Wang, X. Wang, R. Lu, and Z. Man, “Tracking control of a linear motor positioner based on barrier function adaptive sliding mode,” IEEE Trans. Ind. Informat., vol. 17, no. 11, pp. 7479–7488, 2021. doi: 10.1109/TII.2021.3057832
    [5]
    C.-S. Chiu, “Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems,” Automatica, vol. 48, no. 2, pp. 316–326, 2012. doi: 10.1016/j.automatica.2011.08.055
    [6]
    K. Shao, “Nested adaptive integral terminal sliding mode control for high-order uncertain nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 31, pp. 6668–6680, 2021. doi: 10.1002/rnc.5631
    [7]
    D. Qian, H. Ding, S. G. Lee, and H. Bae, “Suppression of chaotic behaviors in a complex biological system by disturbance observer-based derivative-integral terminal sliding mode,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 126–135, 2020. doi: 10.1109/JAS.2019.1911834
    [8]
    Z. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, 2020. doi: 10.1109/JAS.2020.1003057
    [9]
    R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. Sánchez-Torres, and M. Defoort, “Enhancing the settling time estimation of a class of fixed-time stable systems,” Int. J. Robust Nonlinear Control, vol. 29, pp. 4135–4148, 2019. doi: 10.1002/rnc.4600
    [10]
    C.-D. Liang, M.-F. Ge, Z.-W. Liu, G. Ling, and X.-W. Zhao, “A novel sliding surface design for predefined-time stabilization of Euler-Lagrange systems,” Nonlinear Dynamics, vol. 106, pp. 445–458, 2021. doi: 10.1007/s11071-021-06826-0
    [11]
    J. D. Sánchez-Torres, A. J. Munñoz-Vázquez, M. Defoort, E. Jiménez-Rodríguez, and A. G. Loukianov, “A class of predefined-time controllersfor uncertain second-order systems,” European J. Control, vol. 53, pp. 52–58, 2019.
    [12]
    Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time,” Automatica, vol. 83, pp. 243–251, 2017. doi: 10.1016/j.automatica.2017.06.008
    [13]
    P. Krishnamurthy, F. Khorrami, and M. Krstic, “A dynamic high-gain design for prescribed-time regulation of nonlinear systems,” Automatica, vol. 115, no. 108860, 2020. doi: 10.1016/j.automatica.2020.108860
    [14]
    A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2011.
    [15]
    E. Jiménez-Rodríguez, A. J. Muoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, and A. G. Loukianov, “A Lyapunov-like characterization ofpredefined-time stability,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4922–4927, 2020. doi: 10.1109/TAC.2020.2967555

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (123) PDF downloads(63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return