IEEE/CAA Journal of Automatica Sinica
Citation:  A. Li, A. Astolfi, and M. Liu, “Attitude regulation with bounded control in the presence of large disturbances with bounded moving average,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 834–846, May 2022. doi: 10.1109/JAS.2022.105557 
The attitude regulation problem with bounded control for a class of satellites in the presence of large disturbances, with bounded moving average, is solved using a Lyapunovlike design. The analysis and design approaches are introduced in the case in which the underlying system is an integrator and are then applied to the satellite attitude regulation problem. The performance of the resulting closedloop systems are studied in detail and it is shown that trajectories are ultimately bounded despite the effect of the persistent disturbance. Simulation results on a model of a small satellite subject to large, but bounded in moving average, disturbances are presented.
[1] 
J. J. Spilker Jr., Digital Communications by Satellite. Englewood Cliffs, USA: PrenticeHall, 1977.

[2] 
G. W. Beakley, “Overview of commercial satellite communications,” IEEE Trans. Aeros. Electron. Syst., vol. AES20, no. 4, pp. 455–464, Jul. 1984. doi: 10.1109/TAES.1984.4502064

[3] 
J. W. Chu, “Use of satellites for navigation,” IEEE Trans. Aerosp. Electron. Syst., vol. AES4, no. 5, pp. 799–800, Sept. 1968. doi: 10.1109/TAES.1968.5408698

[4] 
R. Prasad and M. Ruggieri, Applied Satellite Navigation Using GPS, GALILEO, and Augmentation Systems. Boston, USA: Artech House, 2005.

[5] 
G. Asner, A. R. Townsend, and B. H. Braswell, “Satellite observation of El Niño effects on Amazon forest phenology and productivity,” Geophys. Res. Lett., vol. 27, no. 7, pp. 981–984, Apr. 2000. doi: 10.1029/1999GL011113

[6] 
L. N. Lamsal, R. V. Martin, A. Padmanabhan, A. van Donkelaar, Q. Zhang, C. E. Sioris, K. Chance, T. Kurosu, and M. J. Newchurch, “Application of satellite observations for timely updates to global anthropogenic NOx emission inventories,” Geophys. Res. Lett., vol. 38, no. 5, Mar. 2011.

[7] 
A. Sofyali and E. M. Jafarov, “Threeaxis attitude control of a small satellite by magnetic PDlike controller integrated with passive pitch bias momentum method,” in Proc. 5th Int. Conf. Recent Advances in Space Technologies, Istanbul, Turkey, 2001, pp. 307−311.

[8] 
N. A. Nobari and A. K. Misra, “A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring,” Acta Astronaut., vol. 94, no. 1, pp. 470–479, Jan.–Feb. 2014. doi: 10.1016/j.actaastro.2012.12.012

[9] 
M. L. Psiaki, “Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation,” J. Guid. Control Dyn., vol. 24, no. 2, pp. 386–394, Mar. 2001. doi: 10.2514/2.4723

[10] 
D. Torczynski, R. Amini, and P. Massioni, “Magnetorquer based attitude control for a nanosatellite testplatform,” in Proc. AIAA Infotech@Aerospace, Atlanta, Georgia, 2010, pp. 3511.

[11] 
K. X. Zhou, H. Huang, X. S. Wang, and L. Sun, “Magnetic attitude control for Earthpointing satellites in the presence of gravity gradient,” Aerosp. Sci. Technol., vol. 60, pp. 115–123, Jan. 2017. doi: 10.1016/j.ast.2016.11.003

[12] 
D. K. Giri and M. Sinha, “Robust backstepping magnetic attitude control of satellite subject to unsymmetrical mass properties,” J. Spacecr Rockets, vol. 56, no. 1, pp. 298–305, Jan.–Feb. 2019. doi: 10.2514/1.A34298

[13] 
A. R. Persico, Kirkland, C. Clemente, J. J. Soraghan, and M. Vasile, “CubeSatbased passive bistatic radar for space situational awareness: A feasibility study,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 1, pp. 476–485, Feb. 2019. doi: 10.1109/TAES.2018.2848340

[14] 
H. U. Oh and T. Park, “Experimental feasibility study of concentrating photovoltaic power system for CubeSat applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 1942–1949, Jul. 2015. doi: 10.1109/TAES.2015.140208

[15] 
S. A. Rawashdeh, “Attitude analysis of small satellites using modelbased simulation,” Int. J. Aerosp. Eng., vol. 2019, Apr. 2019.

[16] 
A. Poghosyan and A. Golkar, “CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions,” Prog. Aerosp. Sci., vol. 88, pp. 59–83, Jan. 2017. doi: 10.1016/j.paerosci.2016.11.002

[17] 
J. PuigSuari, C. Turner, and W. Ahlgren, “Development of the standard CubeSat deployer and a CubeSat class PicoSatellite,” in Proc. IEEE Aerospace Conf., Big Sky, USA, 2001, pp. 1/347−1/353.

[18] 
H. Heidt, J. PuigSuari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: A new generation of picosatellite for education and industry lowcost space experimentation,” in Proc. 14th Annu./USU Conf. Small Satellites, 2000.

[19] 
J. Gießelmann, “Development of an active magnetic attitude determination and control system for picosatellites on highly inclined circular low earth orbits,” M.S. thesis, RMIT Univ., Melbourne, Australasia, 2006.

[20] 
B. Sease, Q. M. Yang, Y. J. Xu, J. X. Che, and C. Y. Cao, “L_{1} adaptive attitude control for a picoscale satellite test bed,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1147–1154, Apr. 2015. doi: 10.1109/TAES.2014.120175

[21] 
A. Lassakeur, C. Underwood, B. Taylor, and R. Duke, “Magnetic cleanliness program on CubeSats and nanosatellites for improved attitude stability,” J. Aeronaut. Space Technol., vol. 13, no. 1, pp. 25–41, Jan. 2020.

[22] 
A. Lassakeur, C. Underwood, and B. Taylor, “Enhanced attitude stability and control for CubeSats by realtime onorbit determination of their dynamic magnetic moment,” in Proc. 69th Int. Astronautical Congr., 2018.

[23] 
M. Lovera and A. Astolfi, “Global magnetic attitude control of spacecraft in the presence of gravity gradient,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 3, pp. 796–805, Jul. 2006. doi: 10.1109/TAES.2006.248214

[24] 
J. Q. Li, M. Post, T. Wright, and R. Lee, “Design of attitude control systems for CubeSatclass nanosatellite,” J. Control Sci. Eng., vol. 2013, May 2013.

[25] 
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides. Dordrecht, Netherlands: Springer, 1988.

[26] 
A. McNabb, “Comparison theorems for differential equations,” J. Math. Anal. Appl., vol. 119, no. 1–2, pp. 417–428, Oct.–Nov. 1986. doi: 10.1016/0022247X(86)901630

[27] 
L. F. Bǎrbulescu, A. F. Butu, M. Marian, and F. Stîngǎ, “Estimation of the attitude of a CubeSat under environmental torques,” in Proc. 21st Int. Conf. System Theory, Control and Computing, Sinaia, Romania, 2017, pp. 291−296.

[28] 
J. R. Wertz, Spacecraft Attitude Determination and Control. New York, USA: Springer Science and Business Media, 2012.

[29] 
A. Scholz, W. Ley, B. Dachwald, J. J. Miau, and J. C. Juang, “Flight results of the COMPASS1 picosatellite mission,” Acta Astronaut., vol. 67, no. 9–10, pp. 1289–1298, Nov.–Dec. 2010. doi: 10.1016/j.actaastro.2010.06.040
