A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 4
Apr.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Mousavi, A. Alfi, I, B. Kucukdemiral, and A. Fekih, “Tube-based model reference adaptive control for vibration suppression of active suspension systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 1–3, Apr. 2022.
Citation: Y. Mousavi, A. Alfi, I, B. Kucukdemiral, and A. Fekih, “Tube-based model reference adaptive control for vibration suppression of active suspension systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 1–3, Apr. 2022.

Supplementary Material for Tube-Based Model Reference Adaptive Control for Vibration Suppression of Active Suspension Systems

  • loading
  • [1]
    G. Georgiou, G. Verros, and S. Natsiavas, “Multi-objective optimization of quarter-car models with a passive or semi-active suspension system,” Vehicle System Dynamics, vol. 45, no. 1, pp. 77–92, 2007. doi: 10.1080/00423110600812925
    H. Pan, W. Sun, X. Jing, H. Gao, and J. Yao, “Adaptive tracking control for active suspension systems with non-ideal actuators,” Journal of Sound and Vibration, vol. 399, pp. 2–20, 2017. doi: 10.1016/j.jsv.2017.03.011
    K. El Majdoub, F. Giri, and F.-Z. Chaoui, “Adaptive backstepping control design for semi-active suspension of half-vehicle with magnetorheological damper,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 582–596, 2020.
    J. Na, Y. Huang, X. Wu, S.-F. Su, and G. Li, “Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay,” IEEE Trans. Cybernetics, vol. 50, no. 6, pp. 2639–2650, 2019.
    G. I. Mustafa, H. Wang, and Y. Tian, “Vibration control of an active vehicle suspension systems using optimized model-free fuzzy logic controller based on time delay estimation,” Advances in Engineering Software, vol. 127, pp. 141–149, 2019. doi: 10.1016/j.advengsoft.2018.04.009
    C. Onat, I. Kucukdemiral, S. Sivrioglu, I. Yuksek, and G. Cansever, “LPV gain-scheduling controller design for a non-linear quarter-vehicle active suspension system,” Transactions of the Institute of Measurement and Control, vol. 31, no. 1, pp. 71–95, 2009. doi: 10.1177/0142331208090630
    H. Pang, X. Zhang, J. Chen, and K. Liu, “Design of a coordinated adaptive backstepping tracking control for nonlinear uncertain active suspension system,” Applied Mathematical Modelling, vol. 76, pp. 479–494, 2019. doi: 10.1016/j.apm.2019.06.030
    Q. Wang, Y. Zhao, H. Xu, and Y. Deng, “Adaptive backstepping control with grey signal predictor for nonlinear active suspension system matching mechanical elastic wheel,” Mechanical Systems and Signal Processing, vol. 131, pp. 97–111, 2019. doi: 10.1016/j.ymssp.2019.05.046
    Y. Li, Y. Liu, and S. Tong, “Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints,” IEEE Trans. Neural Networks and Learning Systems, 2021.
    H. Pang, F. Liu, and Z. Xu, “Variable universe fuzzy control for vehicle semi-active suspension system with mr damper combining fuzzy neural network and particle swarm optimization,” Neurocomputing, vol. 306, pp. 130–140, 2018. doi: 10.1016/j.neucom.2018.04.055
    F. Zhang, J. Hua, and Y. Li, “Indirect adaptive fuzzy control of siso nonlinear systems with input-output nonlinear relationship,” IEEE Trans. Fuzzy Systems, vol. 26, no. 5, pp. 2699–2708, 2018. doi: 10.1109/TFUZZ.2018.2800714
    X. Min, Y. Li, and S. Tong, “Adaptive fuzzy optimal control for a class of active suspension systems with full-state constraints,” IET Intelligent Transport Systems, vol. 14, no. 5, pp. 371–381, 2020. doi: 10.1049/iet-its.2019.0187
    M. Haddar, R. Chaari, S. C. Baslamisli, F. Chaari, and M. Haddar, “Intelligent pd controller design for active suspension system based on robust model-free control strategy,” Proc. the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science, vol. 233, no. 14, pp. 4863–4880, 2019. doi: 10.1177/0954406219836443
    J. Theunissen, A. Sorniotti, P. Gruber, S. Fallah, M. Ricco, M. Kvasnica, and M. Dhaens, “Regionless explicit model predictive control of active suspension systems with preview,” IEEE Trans. Industrial Electronics, vol. 67, no. 6, pp. 4877–4888, 2019.
    L. Ovalle, H. Ríos, and H. Ahmed, “Robust control for an active suspension system via continuous sliding-mode controllers,” Engineering Science and Technology, an Int. Journal, 2021.
    V. S. Deshpande, B. Mohan, P. Shendge, and S. Phadke, “Disturbance observer based sliding mode control of active suspension systems,” Journal of Sound and Vibration, vol. 333, no. 11, pp. 2281–2296, 2014. doi: 10.1016/j.jsv.2014.01.023
    D. Zhang and B. Wei, “A review on model reference adaptive control of robotic manipulators,” Annual Reviews in Control, vol. 43, pp. 188–198, 2017. doi: 10.1016/j.arcontrol.2017.02.002
    N. Aguila-Camacho and M. A. Duarte-Mermoud, “Improving the control energy in model reference adaptive controllers using fractional adaptive laws,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 332–337, 2016. doi: 10.1109/JAS.2016.7508809
    A. T. Nguyen, M. S. Rafaq, H. H. Choi, and J.-W. Jung, “A model reference adaptive control based speed controller for a surface-mounted permanent magnet synchronous motor drive,” IEEE Trans. Industrial Electronics, vol. 65, no. 12, pp. 9399–9409, 2018. doi: 10.1109/TIE.2018.2826480
    M. S. Amiri, R. Ramli, and M. F. Ibrahim, “Initialized model reference adaptive control for lower limb exoskeleton,” IEEE Access, vol. 7, pp. 167 210–167 220, 2019. doi: 10.1109/ACCESS.2019.2954110
    J. Gao, P. Wu, T. Li, and A. Proctor, “Optimization-based model reference adaptive control for dynamic positioning of a fully actuated underwater vehicle,” Nonlinear Dynamics, vol. 87, no. 4, pp. 2611–2623, 2017. doi: 10.1007/s11071-016-3214-2
    C. M. Ho, D. T. Tran, and K. K. Ahn, “Adaptive sliding mode control based nonlinear disturbance observer for active suspension with pneumatic spring,” Journal of Sound and Vibration, p. 116241, 2021.
    F. Tyan, Y.-F. Hong, S.-H. Tu, W. S. Jeng, et al., “Generation of random road profiles,” Journal of Advanced Engineering, vol. 4, no. 2, pp. 1373–1378, 2009.
    T. C. ISO/TC, M. Vibration, S. S. S. Measurement, E. of Mechanical Vibration, and S. as Applied to Machines, Mechanical Vibration–Road Surface Profiles–Reporting of Measured Data, vol. 8608. Int. Organization for Standardization, 1995.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (333) PDF downloads(25) Cited by()


    DownLoad:  Full-Size Img  PowerPoint