Citation: | S. Wu, X. Li, and S. Song, “A novel finite-time stability criterion for nonlinear systems involving flexible delayed impulses,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 0, pp. 1–3, Jul. 2025. |
[1] |
F. Cacace, V. Cusimano, and P. Palumbo, “Optimal impulsive control with application to antiangiogenic tumor therapy,” IEEE Transactions on Control Systems Technology, vol. 28, no. 1, pp. 106–117, 2018.
|
[2] |
W. He, Z. Mo, Q.-L. Han, and F. Qian, “Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 5, pp. 1326–1334, 2020. doi: 10.1109/JAS.2020.1003297
|
[3] |
L. Hua, K. Shi, Z.-G. Wu, S. Han, and S. Zhong, “Sliding mode control for recurrent neural networks with time-varying delays and impulsive effects,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1319–1321, 2023. doi: 10.1109/JAS.2023.123372
|
[4] |
J. P. Hespanha, D. Liberzon, and A. R. Teel, “On input-to-state stability of impulsive systems,” in Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005, pp. 3992–3997.
|
[5] |
X. Li, D. W. Ho, and J. Cao, “Finite-time stability and settling-time estimation of nonlinear impulsive systems,” Automatica, vol. 99, pp. 361–368, 2019. doi: 10.1016/j.automatica.2018.10.024
|
[6] |
T. Wei and X. Li, “Fixed-time and predefined-time stability of impulsive systems,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 4, pp. 1086–1089, 2023. doi: 10.1109/JAS.2023.123147
|
[7] |
F. Shi, Y. Liu, Y. Li, and J. Qiu, “Input-to-state stability of nonlinear systems with hybrid inputs and delayed impulses,” Nonlinear Analysis: Hybrid Systems, vol. 44, p. 101145, 2022. doi: 10.1016/j.nahs.2021.101145
|
[8] |
Y. Kao, H. Li, Y. Liu, H. Xia, and C. Wang, “Global stability of fractional nonlinear differential systems with state-dependent delayed impulses,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 11, pp. 16960–16965, 2024. doi: 10.1109/TNNLS.2023.3291210
|
[9] |
H. Yang, C. Peng, and Z. Cao, “A novel memory-based scheduling protocol for networked control systems under stochastic attacks and bandwidth constraint,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1336–1339, 2023. doi: 10.1109/JAS.2023.123162
|
[10] |
K. Zhang and E. Braverman, “Time-delay systems with delayed impulses: A unified criterion on asymptotic stability,” Automatica, vol. 125, p. 109470, 2021. doi: 10.1016/j.automatica.2020.109470
|
[11] |
Y. Cui, P. Cheng, and X. Ge, “Exponential synchronization of delayed stochastic complex dynamical networks via hybrid impulsive control,” IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 3, pp. 785–787, 2024. doi: 10.1109/JAS.2023.123867
|
[12] |
W.-H. Chen and W. X. Zheng, “Exponential stability of nonlinear time-delay systems with delayed impulse effects,” Automatica, vol. 47, no. 5, pp. 1075–1083, 2011. doi: 10.1016/j.automatica.2011.02.031
|
[13] |
F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, G. De Tommasi et al., Finite-time Stability and Control. Springer, 2014, vol. 453.
|
[14] |
L. Hua, H. Zhu, S. Zhong, K. Shi, and J. Cao, “Novel criteria on finite-time stability of impulsive stochastic nonlinear systems,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 7, pp. 1634–1636, 2023. doi: 10.1109/JAS.2023.123276
|
[15] |
S. Wu and X. Li, “Finite-time stability of nonlinear systems with delayed impulses,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 12, pp. 7453–7460, 2023. doi: 10.1109/TSMC.2023.3298071
|